(Review Article)

IJP (2024), Vol. 11, Issue 5

Received on 09 May 2024; received in revised form, 28 May 2024; accepted, 29 May 2024; published 31 May 2024

A REVIEW ON ASTONISH PLANT FICUS VIRENS

R. Sahana^{*}, T. Balasubramanian, B. S. Suresha and K. H. Ahalya Devi

Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagar, Mandya - 571422, Karnataka, India.

Keywords:

Ficus virens, Moraceae, White fig, Traditional medicines, Phytochemicals, Pharmacological activity

Correspondence to Author: R. Sahana

Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagar, Mandya - 571422, Karnataka, India.

E-mail: sahanargowda2828@gmail.com

ABSTRACT: Plants serve humans as primary sources for food and medicines, so their use in treating diseases is very important for leading a healthy life. Our ancestors employed numerous plants for medicinal purposes, urging the imperative for scientific validation of these traditional practices. Ficus virens (F. virens) is commonly known as white fig, pilkhanand plaksa, one such plant that belongs to the family Moraceae and normally found in India, Southeast Asia, Malaysia, and northern Australia, this plant contains chemical constituents like phenols, flavonoids, tannins, saponins, vitamins, anthocyanins, glycosides, alkaloids, and amino acids. Not much scientific support was given to the folklore claims of the plant, and some of its traditional uses have been investigated, including anti-diabetic, anti-inflammatory, hepatoprotective effect, wound healing properties, anti-hyperlipidemic, anti-viral, antioxidant, anti-bacterial, anti-implantation, anti-ovulatory, antiestrogenic, and anti-cancer activity. As per the literature review, the detailed pharmacological information of F. virens is not yet reported. In this review article taxonomy, synonyms, vernacular names, distribution, food value, ethnomedical uses, phytochemicals, and pharmacological activities of F. virens have been discussed.

INTRODUCTION: Medicinal plants have been an integral part of human life to fight against several diseases since ancient times. More than 80,000 medicinal plants are used around the world, and among them, the maximum number of plants are traditionally used from generation to generation. It means medicinal plants are the backbone of folk or traditional medicines ¹. Medicinal plants play an important role in the prevention and cure of diseases in comparison to conventional treatments that are injurious to health.

Traditional plant medicines still enjoy a significant position in the modern-day drug industry due to the minor side effects as well as the synergistic action of the combination of compounds ². Plants are an enriched source of secondary metabolites with biological and pharmacological activities ³.

The genus Ficus, belonging to the family Moraceae, constitutes an important group of trees with immense medicinal value, plays an important role in the ecosystem, and has been providing food and medicines for humans for a long time ⁴. Ficus, often known as figs, is one of the largest plant genera, with over 800 species of trees, shrubs, and vines found in tropical and subtropical climates across the world ⁵. Ficusis a medicinal plant that is commonly used in India, Malaysia, China, Thailand, South Africa, and other countries due to

its pharmacological properties. Based on some ethnological reports, this genus is used to treat fever, skin diseases, hypertension, diabetes, cardiovascular diseases, and diarrhea. Traditional decoctions of whole plants have been used as herbal drinks for women to recover after childbirth, and they also treat disorders related to the menstrual cycle, improve blood circulation, and regain body strength⁶.

F. virens, commonly known as white fig, locally in Hindi, known as pilkhan, belongs to the genus ficus and family Moraceae ⁷. It is a medium-sized tree that grows to a height of 24-27 meters. *F. virens* is found in coastal, monsoon, or savannah forests, on cliffs, and in secondary rainforests. It is normally found in India, Southeast Asia, Malaysia, and northern Australia. Southeast Asia, Malaysia, and Northern Australia ⁸. Very limited research has been done on the pharmacological activities of *F*.

virens. Some investigation of *F. virens* leaf revealed that phenolic compounds form the major photochemical components. Its leaf shows antioxidant, anti-inflammatory, anti-diabetic, and hepatoprotective properties. The stem bark of the tree is employed in the indigenous systems of medicine for a variety of purposes, like as an astringent medicine, for cooling in action, as hemostatic, as a laxative, to improve complexion, to clean the vagina, and as an antiseptic ⁹.

It is also used for inflammatory swellings, boils, and wound healing. The bark extract showed antifungal, antibacterial, anti-inflammatory, and anticancer properties. Phytochemicals found in *F*. *virens* include phenolics, flavonoids, tannins, terpenoids, alkaloids, glycosides, sitosterol, lupeol, stigmasterol, gallic acid, epicatechin, kaempferol, ellagic acid, rutin, catechin, quercetin, betulinic acid, myricetin, and luteolin⁴.

FIG. 1: FICUS VIRENS

Taxonomical Classification ⁵ :		
Plantae		
Tracheophyta		
Magnoliopsida		
Rosales		
Moraceae		
Ficus		
Virens		
	cation ⁵ : Plantae Tracheophyta Magnoliopsida Rosales Moraceae Ficus Virens	

Plant Biography: Taxonomical Classification ⁵:

Synonyms ¹⁰:

Ficus ampla Kunth & Bouche

Ficus apiculata (Miq.) Miq.
Ficus carolinensis Warb.
Ficus infectoria Roxb
Ficus caulobotrya var. Fraseri (Miq.) Miq.
Ficus cunninghamii (Miq.) Miq.
Ficus glabella Bl.

Ficus glabella var. Nesophila (Miq.) K. Schum.

Vernacular Names ⁵:

Language	Vernacular Name
Gujarati	Pipli or Pipri
Sanskrit	Phagu, Phalgu, or Plaksa
Hindi	Kahimal, Kahimmal, Kaim, Keol, Pakur, Pilkahan, Pilkhan, and Ramanjir
Kannada	Basari, Basarigoli, Juvvimara, Karibasari, Karibasuri, or Mataiichchi
Kannada & Marathi	Pakur, Bassari, Pakari
Telugu	Badijuvvi, Bandajuvvi, Jati, or Jatijuvi
Malayalam	Bakri, Chakkila, Chela, Cherala, Cherla, Chuvannal, Itti, or Jati.
Tamil	Cuvalaipipal, Itti, Jovi, Kallal, Kurugatti, Kurugu, Mataiichchi, or Suvi
Urdu	Pakodo

Distribution: *F. virens* is one of the most widely distributed taxa in the genus Ficus ¹¹. It is a versatile species that can be found in various habitats, including coastal, monsoon, Savannah, and secondary rainforests, as well as in lowland and hill forests. It is a global natural resource, from Sri Lanka to southern China, across Southeast Asia to northern Australia. In India, it is distributed in

the plains or lower hills of India in Sikkim, Bengal, Assam, and the West Peninsula. It is found in the Sub-Himalayan belt in the monsoon, occasionally in deciduous to moist deciduous forests of the Western Ghats and the Decan plateau; it is not common in Decan but frequently planted near villages and along the roads ^{5, 12}.

Tyrosinase Alkaloids Phenolics Flavonoids Glycosides N-octadecanyl-O- α-D-glucopylranosyl N-octadecanyl-O- α-D-glucopylranoside Methyl ricinolate Caffeic acid Cergenin Stem bark **B**-sitosterol Lanosterol Carbohydrate Tannins Steroids/terpenoids Proantrocyanidins Amino acids Phytosterols Tyrosinase Proantrocyanidins Lutein Luteolin Fruit

Phytochemical Constituents ^{5, 8}:

	Myricetin
	Catechin
	Epicatechin
	Phenolics
	Flavonoids
	Tyrosinase
	Lipid
	Carotenoids
	Quercetin
Leaves	Quercetin-3-O-α-D-arabinopyranoside
	Quercetin-3-O-β-D-galactopyranoside
	Kaempferol
	Kaempferol-3-O-α-D-arabinopyranoside
	Kaempferol-3-O-β-D-galactopyranoside
	Vogeline J
	Glycosides
	Tannins

Food Value: Plants serve as an excellent source of food and nutrition; they play a vital role in sustaining human health and improving the quality of life. Plants contain a number of phytochemicals and various health benefits; hence, they are often proven to be an advantage for the food and pharmaceutical industries ¹³.

The new foliage leaves of the *F. virens* are collected by the tribal communities during the mansoon and winter seasons since the consumption of mature leaves is not appropriate for human life. The foliage leaves are prepared as side dishes like curry or chutney and eaten with rice. In Thai culture, it is consumed as Phak Lueat and also eaten by boiling as a vegetable. The fruits of *F. virens* are edible; they can be consumed in dried or ripened form. The ripened fruits are also used for the preparation of jam ⁴.

Ethnomedical uses: Since, ancient times, all the parts of the *F. virens* plant have been traditionally used to cure diseases. Different parts are used, as given below:

Fruit: *F. virens* fruits are commonly known as white figs, and they are edible. The ripened fruit is helpful for indigestion, and it can be eaten in the form of jam mixed with jaggery or sugar to cure heart-related diseases. The dried or ripened fig can be roasted over the fire and taken with salt to treat fever. *F. virens*, gives relief to urinary disease and reduces excess sweating. It is also used for estrogenic, hepatoprotective, intrinsic, anti-haemorrhage, anti-erysipelas, and wound healing properties⁴.

Leaves: The foliage leaves of *F. virens* are suitable for human consumption, and the mature leaves are not appropriate for human life. Traditionally, leaf dedication is made against diabetes and a herbal drink for women to recover after childbirth. It also treats disorders related to the menstrual cycle, improves blood circulation, and regains body strength ^{4, 6}.

Bark: The bark has astringent properties, and compared to other parts of *F. virens*, plant bark has more medicinal uses. In spongy gum conditions, the infusion of bark is used as a mouth wash and a paste of bark is used for a burning sensation, rheumatism, and bone fracture. Traditionally, decoctions of bark are used for washing ulcers, treating diarrhoea, menorrhoea, nervous disorders, vaginal diseases, hyperlipidemia, hallucinations, dysentery, vertigo, blood diseases, menstrual disorders, leucorrhea, and diabetes ^{5, 14}.

Latex: The white latex of the *F*. *virens* tree is applied to sore sites to reduce inflammation 4 .

Pharmacological Activity: There are very few research reports on the pharmacological properties of *F. virens*.

Anti-diabetic Activity: The anti-diabetic activity of *Ficus infectoria* methonolic leaf extract was evaluated by streptozotocin-induced rats. Diabetes was induced in rats by a tail vein injection of streptozotocin (50 mg/kg, i.v.). Forty-eight hours after streptozotocin administration, blood samples were drawn by retro-orbital puncture, and glucose levels were determined to confirm diabetes.

The diabetic rats exhibiting blood glucose levels in the range of 250 and 280 mg/100 ml were selected for the studies. . The methanolic extract of *Ficus* infectoria was taken at various dose levels (200, 400, 800, 1000, and 2000 mg/kg b.wt.) and glibenclamide (600 μ g/kg). The methanolic extract of Ficus infectoria showed a significant effect compared with the respective diabetic control group, decreasing the blood glucose level at doses of 100 mg/kg, 200 mg/kg, and 400 mg/kg. The standard drug glibenclamide also showed a significant decrease in the blood glucose level after 21 days. Finally, this study shows 400 mg/kg, and the standard drug showed a significant decrease in the blood glucose level after 21 days of treatment ¹⁵. No clinical signs of toxicity or mortality were observed in Wistar albino rats during both acute and repeated-dose 28-day oral toxicity studies at the given dose and duration. The LD₅₀ value is likely to exceed 2000 mg/kg¹⁶.

The **Anti-inflammatory** Activity: antiinflammatory activity of an ethanolic extract of F. virens bark using carrageenan induced inflammation in the mice. Swiss albino mice were treated orally with normal saline (as the control group) and plant extract (200 and 400 mg/kg) for 60 min before a 0.1 mL 1% carrageenan injection. Paw volume was assessed both before and at 1, 2, and 3 h after post-carrageenan injection. The subplantar injection of carrageenan induced a timedependent paw oedema in the mice. Oral administration of plantextract (200 and 400 mg/kg) inhibited paw swelling dose-dependently at 1, 2, and 3 h after carrageenan injection. The results of this study indicate that the extract from F. virens demonstrates a notable anti-inflammatory effect in mice. It was observed that the ethanolic extract of F. virens (400 mg/kg, p.o.) exhibits maximum antiinflammatory activity against carrageenan-induced hind paw edema 17 .

A methanolic extract of *F. virens* bark and fruit was screened for in vitro anti-inflammatory effects. The study explored a noteworthy stabilisation effect on the RBC membrane using the heat-induced hemolysis method and investigated in vitro antiinflammatory action and egg albumin protein inhibition. The observed anti-inflammatory effect of the methanolic extract may be attributed to the presence of phytochemicals such as alkaloids, phenolics, flavonoids, and tannins. The inhibition of hypotonicity-induced HRBC membrane lysis, i.e., stabilisation of the HRBC membrane, was taken as a measure of the anti-inflammatory activity. The percentage of membrane stabilisation for methanolic extracts and aspirin was done at 100, 200, and 500 μ g/ml. Methanolic extracts of *F*. *virens* are effective in inhibiting the heat-induced hemolysis of HRBC at different concentrations. It showed a maximum inhibition of 64% at 200 μ g/mL.

The inhibitory effect of different concentrations of FVBME on protein denaturation. Methanolic bark different concentrations extract at showed significant inhibition of the denaturation of egg albumin in a dose-dependent manner. When compared with a standard drug at a concentration of 200 µg/mL. The erythrocyte membrane resembles the lysosomal membrane, and as seen, the erythrocyte could be extrapolated to the stabilisation of the lysosomal membrane. Hence, the methanolic extract of F. virens possesses membrane stabilisation properties, limiting the protein denaturation process, and white blood cell anti-migration properties. Therefore, the extract leads to effective RBC membrane stabilisation and protein inhibition denaturation, both of which contribute to in vitro anti-inflammatory activity¹⁸,

Hepatotoxicity: The hepatoprotective effect of a methanolic leaf extract of the *F. virens* plant in rats of both genders. Group i (negative control), group ii (ccl4 control), group iii (standard control) treated with vit-c (ascorbic acid) at 200 mg/kg b.wt., and group iv, v, and vi (test groups) treated with methanolic leaf extract at 50, 100, and 150 mg/kg b.wt., respectively, for 7 days. After 6 h of the last treatment, acute hepatotoxicity has been induced by p.o. administration of ccl₄ (1 ml/kg b.wt.) to all animals in groups ii-vi. On day 8, animals were sacrificed, blood samples were collected for biochemical parameters, and liver tissue was processed for liver function enzymes and antioxidant enzyme profiles. The study revealed that there are gender differences in ccl₄-induced oxidative stress, with males being more prone to ccl_4 -induced oxidative stress than females. F. virens, a traditional medicinal plant, showed marked hepatoprotection at a given dose of 150

mg/kg as compared to other test groups and a positive CCL4 control 20 .

Wound Healing: The wound healing activity of *F*. virens methanolic bark extract, with the fresh homogenized crude extract of F. virens bark prepare a ointment of 10% and Povidone iodine 5% was used as standard drug applied on Wistar albino rats of either sex. Group I - consider as Control, Group II - Ficus virens 10% methanolic extract, Group III - consider as Standard and treated with 5% w/w Povidone iodine ointment. Anesthesia was induced in three groups of animals, each comprising six rats using the open mask method with anesthetic ether. The rats were depilated on the back and a predetermined area of 500 mm2 full thickness skins was excised in the dorsal interscapular region. The Rats were exposed to the ambient environment without any covering. The extract and standard drug were applied daily until the complete healing s the topical application of F. virens methanolic extract (10%) was used as a test drug, which indicates the significance of the wound healing process. An increase in tensile strength may be due to an increase in collagen concentration and the stabilisation of fibers. The results suggest that treatment with a homogenised extract of F. virens bark may have a beneficial influence on the various spaces of wound healing, including fibroplasia, collagen synthesis, and wound contraction. resulting in faster healing²¹.

Anti-Cancer: The anti-breast cancer and antimucositis activities of proanthocyanidins from F. virens were demonstrated in the study. The results revealed that the cytotoxic effects against MDA-MB-231 and MCF-7 breast cancer cells followed the order of proanthocyanidins (spas) >proanthocyanidins leaves fruits > proanthocyanidins from stem barks. Furthermore, spas treatment induced apoptosis in both cell lines, accompanied by an increase in mitochondrial membrane potential loss, reactive oxygen species production, an alteration in the Bax to Bcl-2 protein expression ratio. and activated caspase. Additionally, intraperitoneal injection of 5-FU (150 mg/kg body weight) led to both body weight loss and jejunal injury in the rats, but the administration of spas (100 mg/kg body weight) counteracted Collectively, these changes. this study demonstrated that spas induced apoptosis cell death

in breast cancer cells while ameliorating the symptoms of intestinal mucositis in rats. Hence,spas deserves additional investigation as a promising therapeutic agent for both breast cancer and chemotherapy-induced mucositis. Proanthocyanidins have demonstrated promising anti-carcinogenic effects in several breast cancer models²².

Anti-implantation: Anti-implantation activity of Ficus infectoria aqueous extract Adult female Wistar albino rats in the proestrous phase were kept with adult male rats. The following morning, the females were examined for evidence of copulation, and those showing thick clumps of spermatozoa in their vaginal smears were separated for the experiment. The detection of spermatozoa was considered the beginning of pregnancy, designated as day 1. 12 albino rats were divided into 2 groups of 6 animals. Group 1 served as the control and was administered distilled water. Group 2 received an aqueous extract of Ficus infectoria at a dose of 100 mg/kg body weight orally on days 1-7 post-coital with the help of a catheter. On the 10th day of pregnancy, a laparotomy was performed under general anesthesia. Count the number of implants from the uterus and the corpora lutea from the ovary. Calculate the pre-implantation loss and postimplantation loss using the equation. Therefore, extracts possess greater post-implantation loss than pre-implantation loss ²³.

Anti-ovulatory: Anti-ovulatory activity of Ficus infectoria in albino female rats by examining whether it inhibited cupric acetate-induced ovulation. Animals were kept in isolation for at least 21 days to ensure that they were not pregnant and to prevent the induction of ovulation by mating. After isolation, these animals were divided into two groups of six animals each. Ficus *infectoria* was administered from day 1st to 3rd by oral route at a dose level of 100 mg/kg body weight in Group 2 animals. Group 1 served as control group and received distilled water only by oral route. Thirty minutes after the administration of the last dose, a freshly prepared 0.4% solution of cupric acetate was administered intravenously to each animal at a dose of 4 mg/kg body weight to induce ovulation. To observe ovulation, all rats were sacrificed, and the ovaries were examined after 18-24 hours of the administration of cupric acetate. Compare histopathology with that of the normal group. Group 2 histopath shows numerous follicles in the earlier stages of maturation; the number of corpora luteaseen in this group was noticeably less than that seen in the control group 23 .

Anti-estrogenic: Anti-oestrogenic activity is usually determined by the ability of a compound to inhibit the increases in uterine weight induced by oestrogen. The anti-oestrogen activity was executed on immature female Swiss albino mice, about 3 weeks old and weighing approximately 8–10 rams. Animals were divided into 4 groups of 5 animals: Group 1: 2 ml of distilled water (control); Group 2: 0.5 µg/ml of estradiol benzoate in olive oil (standard group); and Group 3: 100 mg/kg of body weight aqueous extract of Ficus infectoria (oral). Group 4: 100 mg/kg body weight aqueous extract of Ficus infectoria (oral) followed by 0.5 µg/ml of beta-estradiol in olive oil (subcutaneously). The treatment was continued for 4 days. 24 hours after the last dose, the animals were sacrificed, and their uteri were dissected, pressed, and weighed. The weight of the uterus was recorded. The mean value of each group was calculated and expressed as a percent reduction in uterine weight compared to controls treated with estradiol alone. Ficus infectoria induced the uterotropic effect on the uterus, which was possessed by beta-estradiol that exhibited an anti estrogenic activity²³.

Anti-oxidant: The F. virens leaves and stem bark are rich with phenolic components. An aqueous methanolic extract of leaves of F. virens, the various different fractions, etoac and n-buoh, obtained through successive fractionation of the meoh extract exhibit significant antioxidant activity against ti-DPPH radicals. In this present study, phytochemical analysis was conducted on the etoac fraction derived from an aqueous meoh extract of leaves of F. virens, which led to the purification of six known flavonoids (quercetin, quercetin-3-O- α -D-arabinopyranoside, quercetin-3-O-βgalactopyranoside, kaempferol-3-O-α-Darabinopyranoside, kaempferol-3-*O*-β-Dgalactopyranoside, and vogelin J). The antioxidant effect of vogelin J (6) was not reported previously, while the antiradical activities of a few or more of the other molecules 1–5 were studied extensively by various methods. Since the antioxidant capacity depends on the concentration ratio between antioxidants and target, the reaction conditions, and other factors, the anti-DPPH radical activities of the different isolated compounds, as well as an authentic sample of the flavonoid kaempferol, were evaluated under the same experimental conditions. The concentration of antioxidant needed to decrease the initial DPPH concentration by 50% (IC50) was determined. The lower value of IC_{50} corresponds to higher antioxidant power. On the basis of the obtained results, the antioxidant activity of the compounds that follow the trend 1 > 1 $2 \approx 3 >$ kaempferol $> 4 \approx 5 > 6$. Results indicate that the antioxidant activity of flavonoids increases with the number of aromatic OH groups and also suggest two structural requirements for efficient antioxidant flavonoids ^{12, 24}.

Production of free radicals is associated with cigarette smoke (CS), which in turn generates oxidative stress and could be responsible for alterations in the activities of enzymatic and nonenzymatic antioxidants that link with atherosclerosis. FVBM extract, its bioactive fraction (F18), and at or vast at in suspension were administered to male Sprague-Dawley (SD) rats who were subjected to gastric intubation with two divided doses (morning and evening) of 0.5 ml per rat per day, and exposure to cigarette smoke in the morning.

This was achieved by placing two rats in a bottomless metallic container (10 x 11 x 16 inches) with two holes of 3 and 1.5 cm diameter, positioned on the hing side. The burning cigarette was introduced through one hole (3 cm), and the other hole (1.5 cm) was used for ventilation. The animals underwent daily 30-minute exposures to CS over a 4-week period, with a 10-minute interval between each 10-minute exposure. This involved the use of 3 cigarettes per day by 2 rats assigned to each group. CS induces paramount oxidative stress and is consistent with our results. which demonstrate a significant decrease in the liver and lung enzymatic activity of SOD, CAT, Gred, and GST, including the GSH level, while Gpx activity was significantly increased in CS-exposed rats. Histopathological observations strongly support the results, suggesting that the extract from F18/FVBM serves as a highly promising natural antioxidant.

It indicates its potential utility not only as an antioxidant but also as an antiatherogenic agent ²⁵.

Anti-bacterial: Silver nanoparticles (Agnps) were 197cholera197a197d using distinct leaf extracts (aqueous, ethanol, and methanol) of F. virens and evaluated for their antibacterial activity by the agar-well diffusion method against different pathogenic bacterial microorganisms (Bacillus subtilis, Staphylococcus epidermidis, Klebsiella 197 holera 197a, Vibrio 197 holera, Enterococcus faecalis, and Vibrio vulnificus). Sterile cotton swabs were used to uniformly swab each bacterial strain onto individual plates. Wells with a diameter of 8 mm were created on nutrient agar plates using the gel puncture method. The concentration of samples (streptomycin, agno3, agnps, and streptomycin + agnps) used in wells was kept at 1 mg/ml; 60 µl of streptomycin (the positive control), silver nitrate, and agnps (pre-paired with different extracts) were inoculated in different wells in the agar plate. To assess the antibacterial activity of streptomycin, a combined formulation of streptomycin (30 µl) and AgNPs (30 µl) was introduced into the wells. The plates were allowed to remain undisturbed for 1 hour for the diffusion of samples into agar. Incubation of the plates occurred at 37 °C for a duration of 18-24 hrs. The zone of inhibition surrounding the wels was measured using an antibiotic measurement scale and expressed in millimeters. The measurement of negative growth zones was conducted solely after a 24-hour period. The present investigation clearly reveals that AGNPs show a broad spectrum of antibacterial activity against human pathogens and further synergistically enhance the antibacterial activity of streptomycin²⁶.

Antiviral: A wide variety of active phytochemicals have been found to have therapeutic effects against different genetically and functionally diverse viruses. Some plant-derived extracts rich in flavonoids, such as quercetin glycosides, showed high activity against viral infection in *in-vivo* and in vitrostudies. Ouercetin and quercetin-3-Oglycosides showed anti-Mayaro virus activity. The flavonoid dihydroquercetin (taxifolin) exhibits strong in-vitro and in-vivo antiviral activities against CVB4 and HAV. Some flavonoids have also shown antiviral activities against influenza virus, HSV-1 and HSV-2, enterovirus 71, and

dengue virus. In our efforts to explore the potential of natural products as sources of low toxicity and high antiviral selectivity, we examined the in vitroantiviral activity of six pure flavonoids (quercetin, quercetin-3-O- α -D-arabinopyranoside, quercetin-3-O-β-D-galactopyranoside, kaempferol-3-*O*-α-D-arabinopyranoside, kaempferol-3-*O*-β-Dgalactopyranoside, and vogelin J) from F. virens. Results of the virus inhibitory effects of the flavonoids demonstrated that quercetin, quercetin- $3-O-\alpha$ -D-arabinopyranoside, and vogelin J exert mild inhibitory activity on CVB4 at their MNTCs of 15.6, 15.6, and 62.5 µg/ml, respectively. On the other hand, only the quercetin glycosides 2 and 3 exhibited mild inhibitory effects (8.0 and 12.3% at their MNTC (62.5 and 15.6) on HAV, respectively. Kaempferol-3-O-glycosides didn't produce antiviral activity at the experimental conditions. Although the low antiviral activity of quercetin and 3-*O*-glycosides under our experimental its conditions, this is the first report on the anti-CVB4 and HAV properties of these flavonoids. These results are an addition to the known antiviral properties of flavonoids shown in recent reviews. Our results demonstrate that the leaves of F. virens are a cheap source of flavonoids with mild antiviral activity against the CVB4 and HAV viruses⁸.

Hypolipidemic/Anti-hyperlipidemic: The invitro, in-silico rationale, and in-vivo studies were designed to evaluate the hypolipidemic properties of stem, bark, and leaf extracts of F. virens. Among all extracts, methanolic bark extract showed the most potent anti-oxidant, genoprotective, and HMG-coa reductase inhibitory activity. To isolate and identify the bioactive compounds from the methanolic extract of F. virens bark, it was subjected to a column Chromatography was used in order to identify and isolate the bioactive compounds as well as to examine their antioxidant and HMG-coa reductase inhibitor properties. The antioxidant activity of the newly isolated compound was measured using a 2,2-diphenyl-1picrylhydrazyl (DPPH) radical scavenging assay and FRAP value.

In-vivo hypolipidemic properties of FVBM extract and a newly isolated compound were also analysed in triton-WR 1339-induced rats after administration of FVBM extract (at a higher dose of 100 mg/rat) and the inhibitor (1 mg/rat) to Triton-WR 1339induced hyperlipidemic rats. Following the experiment, blood was collected from animals and plasma was separated from it. The result shows a significant increase in plasma TG, TC, VLDL-C, and LDL-C levels, with a decrease in HDL-C value with the increase in hepatic HMG-coA reductase activity. The increase in plasma TG and TC by triton was due to an increase in HMG-coA reductase activity and the inhibition of lipoprotein lipase, which is responsible for the hydrolysis of plasma lipids ²⁷.

CONCLUSION: Plants are the natural sources of bioactive compounds used to treat various lifetreatening diseases. F. virens showed various phytochemical constituents which means that it can be used for treating various types of diseases. This review shows the activity of various parts of the plant and its pharmacological action. Extract and phytoconstituents isolated from this plant have been shows to produce different pharmacological response, which include anti-diabetic, antiinflammatory, hepatoprotective effect, wound healing properties, anti-hyperlipidemic, anti-viral, anti-oxidant, anti-bacterial, anti-implantation, antiovulatory, anti-estrogenic, and anti-cancer activity. Considering all the above impacted medicinal importance of F. virens this review will helps to the researchers for further research study about the plant.

ACKNOWLEDGEMENT: Nil

CONFLICT OF INTEREST: Nil

REFERENCES:

- Poddar S, Sarkar T, Choudhury S, Chatterjee S and Ghosh P: Indian traditional medicinal plants: A concise review. International Journal of Botany Studies 2020; 5(5): 174-90.
- Dar RA, Shahnawaz M and Qazi PH: General overview of medicinal plants: A review. The Journal of Phytopharmacology 2017; 6(6): 349-51.
- 3. Zahid K: Comparative profiling of phytochemical contents and radical scavenging potential in some species of family moraceae. Pakistan Journal of Science 2017; 69(2).
- 4. Das K, Kumar NA, Sahu MS, Srinivas D, Nath S, Goala S and Kumar S: *Ficus virens* Aiton: an unexplored leafy vegetable. August 2023; 10.
- 5. Patel MH, Desai BS, Jha SK, Patel DP, Mehta AA and Garde YA: Phytochemical, pharmacognosy and ethnobotanical importance of the *Ficus virens* Aiton. Indian Journal of Natural Products and Resources 2015; 6(1): 27-32.
- 6. Ibrahim MA and Zakaria NH: Pharmacology of Ficus: A review.

- Tripathi M and Sikarwar RL: Pharmacognostic studies on Plaksa (*Ficus virens* Ait.) stem bark. Indian Journal of Natural Products and Resources 2015; 6(1): 27-32.
- 8. Orabi MA and Orabi EA: Antiviral and antioxidant activities of flavonoids of *Ficus virens*: Experimental and theoretical investigations. Journal of Pharmacognosy and Phytochemistry 2016; 5(3): 120-8.
- Babu K, Sabesan GS and Rai S.: Comparative pharmacognostic studies on the barks of four *Ficus species*. Turkish Journal of Botany 2010; 34(3): 215-24.
- 10. https://indiabiodiversity.org/species/show/31361
- 11. Nair SS, Bachan KH and Ebin PJ: Aiton var. (Moraceae): a new record for India. Biodiversity Research and Conservation 63(1): 41-7.
- 12. Nair SS, Bachan KH, Ebin PJ, Augustine L and Joseph A: *Ficus virens* Aiton var. matthewii Chantaras: A new distributional record from Kerala. Species 2021; 22(69): 21-8.
- 13. Walia A, Kumar N, Singh R, Kumar H, Kumar V, Kaushik R and Kumar AP: Bioactive compounds in Ficus fruits, their bioactivities, and associated health benefits: a review. Journal of Food Quality 2022; 2022:1-9.
- 14. Kumar A, Jha KK, Kumar D, Agrawal A and Gupta A: Preliminary phytochemical analysis of leaf and bark (mixture) extract of *Ficus infectoria* plant. The Pharma Innovation 2012; 1(5): 71.
- RM C, Sahu CM and Jayakar B: Antidiabetic activity of methanolic extract of bark of *Ficus infectoria* Roxb. International Journal of Pharmacy & Life Sciences 2010; 1(5): 278-281.
- 16. Jayashree P, Shridhar NB, Vijaykumar M, Suhasini KJ and Satyanarayana ML: Toxicological studies of *Ficus virens* in wistar albino rats. Int Res J Pharmacy 2012; 3: 84-7.
- 17. Hafeez A, Jain U, Sajwan P, Srivastava S and Thakur A: Evaluation of Carrageenan induced anti-inflammatory activity of ethanolic extract of bark of *Ficus virens* Linn. in swiss albino mice. The Journal of Phytopharmacology 2013; 2(3): 39-43.
- Ramadevi M, Sivasubramanian N, Selvan AT, Prasad BS and Anbazhagan S: Screening of *in-vitro* antiinflammatory activity of *Ficus virens* bark. J Glob Trends Pharm Sci 2014; 5(4): 2034-6.
- 19. Mir PA, Mahajan S, Verma A, Kumar N, Arora M and Nagpal N: *In-vitro* Antioxidant and Anti-inflammatory Potential of Ficus infectoria Fruits. Pharmacognosy Research 2022; 14(2).
- Pattar J, Shridhar NB, Sanganal J, Satyanarayana ML, Suhasini K and Kadagi M: Gender difference of oxidative stress to ccl4 induced hepatoxicity and protective role of *Ficus virens* in rats: a biochemical study. Journal of Cell & Tissue Research 2013; 13(3).
- Ramadevi M, Sivasubramanian N, Tamil Selvan A and Sree Giri Prasad B: Wound Healing Activity of Bark Extracts of *Ficus virens* on Wistar Albino Rats. Int J Pharm Sci Rev Res 2014; 27(2): 16-18.
- 22. Chen XX, Lam KH, Chen QX, Leung GP, Tang SC, Sze SC, Xiao JB, Feng F, Wang Y, Zhang KY and Zhang ZJ: *Ficus virens* proanthocyanidins induced apoptosis in breast cancer cells concomitantly ameliorated 5-fluorouracil induced intestinal mucositis in rats. Food and Chemical Toxicology 2017; 110: 49-61.
- 23. Agrawal SS and Khamar J: Anti implantation, anti ovulatory and anti estrogenic studies of the aqeuous extract of *Ficus infectoria* (pilkhan) in rodents. World Journal of Pharmaceutical Research 2021; 10(4): 1260-1269.
- 24. Jassal PS and Monika S: Evaluation of antioxidant, antibacterial, antihemolytic, and phytochemical properties

of Ficus benjamina, Ficus infectoria, and Ficus krishnae. Evaluation 2019; 12(10.1016).

- 25. Iqbal D, Khan MS, Khan A and Ahmad S: Extenuating the role of *Ficus virens* Ait and its novel bioactive compound on antioxidant defense system and oxidative damage in cigarette smoke exposed rats. Biomedical Research and Therapy 2016; 3: 1-0.
- 26. Salar RK, Sharma P and Kumar N: Enhanced antibacterial activity of streptomycin against some human pathogens

How to cite this article:

Sahana R, Balasubramanian T, Suresha BS and Devi KHA: A review on astonish plant *Ficus virens*. Int J Pharmacognosy 2024; 11(5): 190-99. doi link: http://dx.doi.org/10.13040/IJPSR.0975-8232.IJP.11(5).190-99.

This Journal licensed under a Creative Commons Attribution-Non-commercial-Share Alike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)

using green synthesized silver nanoparticles. Resource-Efficient Technologies 2015; 1(2): 106-15.

27. Iqbal D, Khan MS, Ahmad S, Hussain MS and Ali M: Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from *Ficus virens* Ait. Lipids in Health and disease 2015; 14: 1-5.