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ABSTRACT: Neurodegenerative movement disorder of the central 

nervous system (CNS) (Parkinson’s disease (PD)) is characterized by 

necrosis of dopaminergic neurons within the substan tianigra pars 

compacta are ain the midbrain. The PD cause is still unknown and 

seems to be multifactorial. Oxidative stress and mitochondrial 

impairment have been the main consequences, which offer prominent 

clues regarding the disease mechanisms. The effect of free radicals 

and oxidative stress on the cascade of events resulting in dopamine 

cell degeneration in PD has been demonstrated. In-built protective 

mechanisms, including enzymatic and non-enzymatic antioxidants 

within the CNS, effectively prevent neuronal cell loss because of free 

radicals. However, aging is associated with a decrease in the 

production of these antioxidants. Thus, antioxidant therapy alone or 

combined with available treatment methods offers an attractive 

method to treat or prevent neurodegeneration in PD. We summarized 

the recent discoveries of potential antioxidant agents to modulate free 

radical-mediated oxidative stress resulting in neurotoxicity in PD. 

INTRODUCTION: Neurodegenerative diseases 

are chronica and progressive diseases causing 

neuronal cell death. Alzheimer's disease (AD), 

Parkinson's disease (PD) Huntington's disease 

(HD), and cerebral ischemia are caused by 

oxidative stress. The Brain as a very active organ 

accounts for only 2% of the body weight and uses 

20% of body oxygen and 25% of body glucose 

while resting. Reactive oxygen species (ROS)  
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generated in tissues are directly proportional to the 

tissue oxygen use leading to an increase in 

intellectual processes, such as planning, thinking 

and reasoning; therefore, brain is always under 

oxidation/anti-oxidation process, making it prone to 

oxidative damage. The brain uses many antioxidant 

mechanisms for combating ROS. Catalase (CAT) 

and glutathione peroxidase are found in the cytosol 

of Brain cells that can hydrolyze H2O2 and reduce 

organic hydroperoxides, respectively.  

Neuronal mitochondria include upper oxide 

dismutase (SOD) to convert. O2- to H2O2, which is 

then metabolized by CAT, forming neurotoxic and 

inflammatory cytokine-inducing. ONOO- from. O2 

- and NO. Brain cells are characterized by defense 

mechanisms to deal with ROS, but when ROS 
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levels are unusually high or antioxidant defense is 

at a low level, cells bear oxidative damage resulting 

in neurodegenerative disorders. Exogenous H2O2 

can generate ROS over the cellular defense system 

capacity resulting in apoptotic cell death. No 

effective drugs are available in the conventional 

system to deal with or check the onset or 

progression of neurodegenerative disorders. But, 

Ayurveda has long employed several herbs for 

treating and preventing neurodegenerative diseases. 

A few studies have been done on the 

neuroprotective activity of these plants. Thus, 

searching for new therapies associated with few 

side effects is increasing. Medhya rasayana as 

Ayurvedic drugs increase physical and mental 

health and immunity of the body.  

Antioxidants have been shown with health-

promoting effects protecting against different age-

related diseases. They are endogenous or 

exogenous molecules, which prevent oxidative 

stress and its related effects on cellular systems. 

Oxidative imbalance during neurodegenerative 

processes can be triggered by brain aging, 

mitochondrial dysfunction, genetic predisposition, 

free radical generation, and environmental toxins. 

For overcoming free radical-mediated 

complications caused by disease processes and 

drug therapies, antioxidants have been considered 

as persuasive therapeutics to combat neuronal loss 

because they can neutralize free radicals. 

Therefore, we reviewed the recent study on the 

neuroprotective potential of antioxidants agents in 

PD experimental models. 

MATERIALS AND METHODS: 

Chemicals and Reagents: 

Immunocyto-fluorescence: Used in western 

blotting, main antibodies were monoclonal anti- 

HSP70 (Clone BRM-22, Sigma-Aldrich) and anti-

Grp 75 (Mortalin) (Abcam), and anti-α- tubulin 

(Clone AA13, Sigma-Aldrich). Anti-mouse IgG: 

HRP (Bangalore genei) and antimouse Alexa Fluor 

568 (Invitrogen) were appliedas secondary 

antibodies. MTT, quercetin, and 1’-1” Diphenyl- 

2’-picrylhydrazyl (DPPH) were prepared bySigma-

Aldrich. The PCR reagents, such as Random 

Hexamer Primer, dNTP Mix, Reverse 

Transcriptase, 100bp ladder and Taq DNA 

Polymerase, were obtained from Thermo Fisher 

Scientific. Primers to synthesized DNA for α-HSP, 

tubulin, and Mortalin were obtained from Bio link, 

India. Other chemical agents and reagents were 

prepared in their purest from companies in India. 

Preparing CP-MEx, CP-WEx, and CP-EEx: 

Dried C. pluricaulis was prepared from local 

Ayurvedic Merchants and identified by The 

Department of Botanical and Environmental 

Sciences, Guru Nanak Dev University, India. The 

plant was powdered, and dry rhizome powder (10 

g) was suspended in methanol/ethanol/ distilled 

water (DW) (100 ml) and stirred for 48 h at 30 ± 5 

ºC and then filtrated in sterile conditions, followed 

by concentrating using the vacuum rotary 

evaporator (Buchi, Switzerland) at 35 ºC and the 

pressures of 280, 170 and 60 mbar respectively for 

methanolic, ethanolic, water extracts. The 

concentrated extracts thus obtained are air-dried to 

obtain a powder. The powder was further diluted in 

respective solvent for obtaining a final 

concentration of 50 μg/ml each for CPMEx, CP-

EEx, and CP-WEx. 

Effect of Curcumin (Cur) on Rotenone Toxicity, 

the LC50: To test effect of CUR on rotenone 

toxicity, the LC50 (the concentration leading to 80% 

cell death) of rotenone was used. Pre-treatment 

cells with CUR at 0, 0.1, 05, 1, and 5 μM for 1 h, 

followed by exposing to LC80 of rotenone for 24 h 

was done Z-VAD as a pan-caspase inhibitor and 

positive control (100 μM) was applied. For 

measuring cell death, we used Trypan blue 

exclusion by counting the rate of dead (blue) and 

live cells in the cultures following rotenone 

exposure and/or CUR treatment. In Experiment I, 

incubation of cells with various levels of rotenone 

(2.5, 5, 50, 100, and 200 nM) was done for 24 h, 

and for detecting rotenone IC50 value, MTT assay 

was done. In Experiment II, pre-treatment of the 

cells was done using various levels of hesperidin 

(2.5, 5, 10, 20 and 40 μg) for 4 h, followed by 

incubation with rotenone (effective dosage) for 

24 h. This hesperidin effective dose was applied for 

identifying possible neuroprotective effects on 

rotenone toxicity. 

Cell Culture and Treatments: Human 

Neuroblastoma cell was prepared from NCCS, 

India and kept on Dulbecco’s Modified Eagle’s 

Medium (DMEM) treatedwith10% FCS (Life 

Technologies), streptomycin (100 U/ml), and 



Hassanpour and Karami, IJP, 2021; Vol. 8(11): 462-475.                         E- ISSN: 2348-3962, P-ISSN: 2394-5583 

International Journal of Pharmacognosy                                                                                                                     464 

gentamycin (100 μg/ml), at 37 ºC and humid 

environment including 5% CO2. The H2O2 level 

IC50 for neuroprotection assessments was 

determined by treatment of the cells with H2O2 (7.5 

μM to 1000 μM diluted in medium) at 50% 

confluency for 24 h in serum-free medium. To 

obtain the cytotoxicity profile and nontoxic dose of 

C. pluricaulis extracts were tested at higher doses 

from 25 to 2000 μg/ml. The Human Neuroblastoma 

cells were treated with CP-MEx, CP-EEx, CP-

WEx, and quercetin at 1.5 μg/ml to 50 μg/ml 

diluted in the medium for 24 h at 30-40% 

confluency, followed by subjecting to H2O2 IC50 

concentration i.e 250 μM) for 24 h in serum-free 

medium. The control culture medium with no H2O2 

and extract was replaced with a fresh medium. 

Cell Viability Assay: To assess cell integrity and 

extract cytotoxicity, MTT was used to monitor the 

uptake of the vital mitochondrial dye, MTT via cell 

mitochondria. 

Chemical Standardization of CP-MEX and 

Nature of Active Components: CP-MEx was 

phytochemically screened for alkaloids, amino 

acids, anthroquinones, tannins, flavonoids, 

saponins, phytosterols, triterpenoids steroids, and 

reducing sugars using of Harborne method. Then, 

thin-layer chromatography (TLC) was used with 

chloroform-methanol (19:1) as the solvent front. 

TLC plate was exposed to iodine vapours for 

observation. 

Estimation of Activities of Antioxidant Enzymes 

and Levels of Antioxidants: 

Catalase: CAT activity was measured based on the 

Aebi method. The decomposition rate of H2O2 by 

catalase was measured spectrophotometrically at 

240 nm. The reaction mixture (1 ml) included 0.8 

ml phosphate buffer (0.2 M, pH 7.0) containing 12 

mM H2O2 as substrate, 100 µl of enzyme sample, 

and DW to make up the volume. A decrease in 

absorbance/minute at 240 nm was recorded against 

the H2O2-phosphate buffer as blank. 

Superoxide Dismutase (SOD): SOD was 

estimated using the Kono method. The inhibitory 

effects of SOD are assessed on the reduction of 

nitro blue tetrazolium (NBT) dye using superoxide 

radicals produced through the autoxidation of 

hydroxylamine hydrochloride.  

The NBT reduction was followed by a rise in 

absorbance at 540 nm. The reaction mixture 

included sodium carbonate buffer (50 mM; 1.3 ml), 

pH 10.0, NBT (96 µM; 500 µl) and triton X-100 

(100 µl; 0.6%). The reaction was started by 

adding100 µl of hydroxylamine hydrochloride (20 

mM; pH 6.0). Two minutes later, we added 50 µl of 

enzyme samples, and the rate of inhibition of NBT 

reduction was noted. 

Reduced Glutathione (GSH) and Glutathione 

Peroxidase (Gpx): Total GSH was measured using 

the Sedlak and Lindsay method. Briefly, 100 µl of 

the samples were added to 500 µl of trichloroacetic 

acid (50% w/v) and 4.4 ml of 10 mM EDTA, 

followed by centrifuging at 3000 × g for 15 min. 

The supernatant was added to 5, 5-dithiobis (2-

nitrobenzoic acid) (10 mM 50 µl), and absorbance 

was read at 540 nm. A standard curve was 

constructed with pure GSH. GPx activity was 

assessed indirectly through monitoring the NADPH 

oxidation. Then, 1 ml of the reaction mixture 

including 100 mM GSH, 15 nM H2O2  and 15nM 

NADPH in potassium phosphate buffer (50 mM, 

pH 7.5) was added to the sample (50 µl) and 

changes in absorbance was read at 340 nm. GPx 

activity was considered as 1 µmol NADPH 

oxidized per min at pH 7.5 at 25 ºC with purified 

GPx enzyme. 

Lipid Peroxidation (LPX): LPx was assessed by 

the Beuge and Aust Method. Lipid peroxides are 

unstable, and their decomposition produces a 

complex series of materials, like reactive carbonyl 

compounds. Polyunsaturated fatty acid peroxides 

produce melondialdehyde (MDA) after 

decomposition, which can generate a 1:2 adduct 

with thiobarbituric acid (TBA), resulting in a 

product in red color with absorption of 532 nm. 

The sample (100 µl) was subjected to incubation 

with 100 µl of ascorbic acid (1.5 mM), FeSO4 (1 

mM), and Tris- HCl Buffer (150 mM, pH 7.1) in a 

final volume of 1 ml using DDW (15 min /37 ºC). 

After the addition of trichloroacetic acid (10% w/v; 

1 ml), the reaction was stopped, and then, 2 ml 

thiobarbituric acid (0.375% w/v) was added. The 

mixture was kept in boiling water-bath for 15 min, 

and the contents were subjected to cooling off and 

centrifuging, and the supernatant absorbance was 

read at 532 nm. 
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Immuno Cytochemistry: The control and treated 

cells were rinsed three times using ice-cold 0.1M 

PBS, followed by fixing with Paraformaldehyde 

(4%) for 30 min. Permeabilization was done using 

0.32% PBST for 15 min. After washing Coverslips 

for three times with 0.1% PBST, it was blocked 

with 5% Normal Goat Serum obtained in 0.1% 

PBST for 1 h at room temperature. Incubation of 

the Cells was done using mouse anti-NF-200, anti-

HSP70 and anti-Mortalin and diluted in 0.1% 

PBST at 4 ºC for 24 h in a humid chamber. Then, 

.1% PBST was used to wash Coverslips three 

times. Secondary antibody (anti-mouse Alexa Fluor 

568, anti-rabbit Alexa Fluor 488 and anti-mouse 

Alexa Fluor 488) was used diluted (1:200) in 

0.32% PBST for at room temperature 2h. After 

washing coverslips with 0.1% PBST thrice, the 

final washing was done using0.1M PBS. The 

coverslips were on the slides containing anti-fading 

mounting media (Sigma), and the fluorescent 

microscope Nikon E600 was used for observing. 

The Cool Snap CCD camera was used to capture 

images, and analysis of the pictures was done using 

Image J 1.44p, NIH, USA. 

Reverse Transcription-PCR: Human Neuro-

blastoma cell line cells from 25 cm
2
 culture flask 

were homogenized in TRI Reagent (Sigma). RNA 

extraction and reverse transcription were done 

based on the manufacturer’s instruction. 

RESULT AND DISCUSSION: 

Antioxidant Compounds in Experimental 

Models of PD: CUR as the component of yellow 

curry spice Fig. 1A and B obtained from turmeric 

is used as a food preservative and also for 

therapeutic purposes in India.  

Turmeric was effective against MPTP-induced 

neurotoxicity in-vivo in a mice model of PD. Also, 

CUR was effective against rotenone-related 

toxicity in SH-SY5Y cells, and CUR 

administration (1 mM) could protect against 

rotenen-related cell death dose-dependently by 

reducing the intracellular ROS levels cytochrome 

release, mitochondrial depolarization, and 

activation of caspase-9 and caspase-3. 

  

 
FIG. 1A: CURCUMIN (CUR) WAS PROTECTIVE AGAINST CELL DEATH BY ROTENONE IN-VITRO. (A) 

ROTENONE CHEMICAL STRUCTURE; (B) DOSE-RESPONSE CURVE INDICATING CELL DEATH CAUSED 

BY ROTENONE IN SH-SY5Y CELLS. TREATMENT OFSH-SY5Y CELLS WITH ROTENONE WAS DONE FOR 24 

H IN 2% FBS OPTI-1 MEDIA. TRYPAN BLUE ASSAY WAS USED TO MEASURE CELL DEATH. DATAARE 

PRESENTEDAS MEANS ± SEM. CELL DEATH RATIO IN MULTIPLE GROUPS SHOWED A SIGNIFICANT 

INCREASE COMPARED WITH THE CONTROL GROUP WITHOUT ROTENONE EXPOSURE (*P < 0.05); (C) 

CURCHEMICAL STRUCTURE ; (D) PRE-TREATMENT OF SH-SY5Y CELLS WITH CURFOR 1 H, FOLLOWED 

BYEITHER LEFT UNTREATED (CONTROL) OR TREATED WITH 125 NM ROTENONE FOR 24 H.  TRYPAN 

BLUE EX- CLUSION ASSAY WAS USED TO MEASURE CELL DEATH. CELLS TREATED WITH 

CURINDICATED A SIGNIFICANT DECREASE IN CELL DEATH RATE THAN CELLS EXPOSED TO 

ROTENONE BUT NO CURE TREATMENT *P < 0.05 
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FIG. 1B: CURCUMIN (CUR) DECREASED INTRACELLULAR AND MITOCHONDRIAL ROS CONCENTRATIONS. (A) 

QUANTIFICATION OF DCF FLUORESCENCE IN SH- SY5Y CELLS. CURCAUSED A SIGNIFICANT REDUCTION IN 

ROTENONE-RELATED INTRACELLULAR ROS ELEVATION; (B) AND (C) CAR CAUSED A SIGNIFICANT REDUCTION IN 

ROTENONE-RELATED ROWS IN MITOCHONDRIA. DIGITAL PHOTOMICROGRAPH UNDER FLUORESCENT 

ILLUMINATION INDICATING MITOCHONDRIAL SUPEROXIDE SIGNAL (C) AND THE MEAN OPTICAL DENSITY OF 

MITOSOX (B). THE ROS CONCENTRATION IS SHOWN BY THE MEAN OF CELLULAR MITOSOX OPTICAL DENSITY IN 

10 RANDOMLY SELECTED FIELDS IN EACH CONDITION. VALUES ARE EXPRESSED AS MEAN ± SEM FOR THREE 

INDIVIDUAL EXPERIMENTS. (*P < 0.05, ROS CONCENTRATIONS AS SIGNIFICANTLY DIFFERENT THAN THE CELLS 

WITHOUT ROTENONE AND NO CURE TREATMENT. #P < 0.05, ROS CONCENTRATION WAS SIGNIFICANTLY 

DIFFERENT THAN THE CELLS WITH ROTENONE TREATMENT 

  

  
FIG. 2A: THE QUERCETIN EFFECTS ON IMR32 NEUROBLASTOMA CELL VIABILITY IN THE PRESENCE OR ABSENCE 

OF H2O2. (A) INCUBATINGQUERCETIN WITH IMR32 CELLS (24 H) COULD PROTECT AGAINST THE 

H2O2CYTOTOXICITY CONCENTRATION-DEPENDENTLY. THERE WAS NO CYTOTOXICITY IN THE CELLS 

FOLLOWING INCUBATING WITH QUERCETIN ALONE FOR 24 H AT 1.5 -50 ΜG/ML. (B) THE EFFECTS OF CP-MEX ON 

IMR32 CELL VIABILITY IN THE H2O2PRESENCE OR ABSENCE. INCUBATING THE EXTRACT WITH HEPG2 CELLS (24 

H) COULD PROTECT AGAINST THE CYTOTOXIC EFFECT OF H2O2 CONCENTRATION-DEPENDENTLY. THERE 

WASNO CYTOTOXICITY IN THE CELLS FOLLOWING INCUBATING WITH THE EXTRACT ALONE FOR 24 H AT 1.5 -50 

ΜG/ML. (C) THE CP-EEX EFFECTS ON IMR32 CELL VIABILITY IN THE PRESENCE OR ABSENCE OF H2O2. 

INCUBATING THE EXTRACT WITH HEPG2 CELLS (24 H) COULD PROTECT AGAINST THE H2O2CYTOTOXIC EFFECT 

CONCENTRATION-DEPENDENTLY. THERE WASNO CYTOTOXICITY IN THE CELLS FOLLOWING INCUBATING WITH 

THE EXTRACT ALONE FOR 24 H AT 1.5 -50 ΜG/ML. (D) C) THE CP-WEX EFFECTS ON IMR32 CELL VIABILITY IN THE 

PRESENCE OR ABSENCE OF H2O2. INCUBATING THE EXTRACT WITH HEPG2 CELLS (24 H)COULD PROTECT 

AGAINST THE H2O2CYTOTOXICITY CONCENTRATION-DEPENDENTLY. THERE WAS CYTOTOXICITY IN THE CELLS 

FOLLOWING INCUBATING WITH THE EXTRACT ALONE FOR 24 H AT 1.5 -50 ΜG/ML 
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Fig. 2A and B Convolvulus pluricaulis is 

commonly prescribed to improve learning and 

memory and treat mental health disorders. CP-

MEX, CP-EEX and CP-WEX have been reported 

to protect the IMR32 neuroblastoma cell from 

inducing the toxic effect of H2O2 at a dose-

dependent manner (Kshitija et al., 2012). The 

authors show that CP-MEX 25 µM yield better 

result compare to CP-EEX and CP-WEX            

    
               CONTROL A                   CP-MEX 25G/ML B     H2O2 250M CPMEX 25G/M C             H2O2 250M D

 

  
FIG. 2B: NF-200 LOCALIZATION IN IMR 32 NEUROBLASTOMA CELLS (A), CONTROL (B), CP-MEX-

EXPOSED (C) CP-MEX+H2O2-EXPOSED (D) H2O2-EXPOSED. CELLS AFTER GROWTH ON COVERSLIPS (N = 

5) FOR FOUR DAYS WERE SUBJECTED TO FIXATION AND STAININGFOR NF-200 IMMUNOREACTIVITY 

(ALEXA FLUOR 488). (E) RELATIVE INTENSITY ASSESSMENT OF NF-200 IMMUNOFLUORESCENCE 

CONDUCTED BY IMAGEJ 1.44P. (F) REPRESENTATIVE REVERSE TRANSCRIPTION-POLYMERASE CHAIN 

REACTION (RT-PCR) INDICATING THE EXPRESSION OF NF-200 AND Β-ACTIN IN THE CONTROL, CPMEX 

EXPOSED, CP-MEX+H2O2EXPOSED, H2O2EXPOSED IMR 32 NEUROBLASTOMA CELLS. (G) RELATIVE 

OPTICAL DENSITY ASSESSMENT OF THE NF-200 MEAN EXPRESSION LEVEL IN RT-PCR FOR EACH 

GROUP PRESENTED AS Β-ACTIN PERCENTAGE. A P < .05 WAS CONSIDERED SIGNIFICANT. A’, 

SIGNIFICANT CHANGES IN H2O2-EXPOSED CULTURES THAN THE CONTROL CULTURES; A”, 

SIGNIFICANT CHANGES IN CP-MEX + H2O2EXPOSED CULTURES THAN THE CP-MEX EXPOSED 

CULTURES; A’”, SIGNIFICANT CHANGES IN H2O2EXPOSED CULTURES THAN THE CP-MEX + H2O2 

TREATED CULTURES. 

Hesperidin Fig. 1, as flavonone major flavanone 

availablein citrus and other plants are isolated from 

peels of Citrus aurantium (bitter orange) 
1
. It has 

been reported that this plant exerts several 

Pharmacological activities, like antioxidant, anti-

inflammatory, anti-hyper cholesterolemic, and anti-

carcinogenic 
2
. Antioxidant activity of Hesperidin 

has been tested and reported to protect SK-N-SH 

human neuroblastoma cells against cytotoxicity 

induced by rotenone at the dose of 20 µg 
3
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FIG. 3: HESPERIDIN EFFECT ON ROTENONE-RELATED DECREASE IN CELL PROLIFERATION OFSK-N-SH 

NEUROBLASTOMA CELLS. HESPERIDIN ALONE (BLUE COLUMN) (2.5, 5, 10, 20, AND 40 ΜG) HAD NO 

EFFECTON CELL PROLIFERATION. PRE-TREATMENT WITH HESPERIDIN (2.5, 5, 10 AND 20 ΜG) CAUSED A 

DOSE-DEPENDENT INCREASE IN CELL PROLIFERATION AGAINST ROTENONE TOXIC EFFECT 

Quercetin: Fig. 1B, a major flavonoid has 

beneficial effects against neural damage in-vitro 

and in-vivo. Neuroprotective effect of quercetin on 

PC12 cells in zebrafish was assessed. Quercetin 

(25, 50 and 100 μM) could prevent 6-OHDA-

related PC12 cell apoptosis. In zebrafish, pre-

treatment with quercetin (6 and 12 μM) caused a 

significant attenuation in6-OHDA-stimulated DA 

ergic neuron loss resulting in its development as a 

promising candidate for treating PD.  

Also, it is effective on hypoxia and ischemia-

related neuroprotection by suppressing oxidative 

stress, improving behavioral function, reducing 

infarct volume, brain swelling, and cellular injury 

in-vivo and in-vitro because of its antioxidant 

functions.  

Coenzyme: Q10 (CoQ10; Fig. 1C as an important 

component of the electron transport chain is 

associated with ATP production. The therapeutic 

effect of CoQ10 and decreased CoQ10 was 

assessed in the MPTP model of Parkinsonism mice. 

CoQ10 at 1600 mg/kg/day caused significant 

protection against DA loss after MPTP treatment 

(10 mg/kg, i.p., each 2 h × 3 doses), and also a 

significant increase was observed in plasma levels 

of CoQ10. In a chronic MPTP model (40 mg/kg per 

day for one month), CoQ10 at 1600 mg/kg/day was 

found with excellent therapeutic effects through a 

significant inhibition of striatal DA depletion, 

dopaminergic neuron loss in the SNpc and forming 

SNCA aggregate in the dopaminergic neurons of 

mice. 

FIG. 4: THE MOLECULAR STRUCTURES RELATED TOCURCUMIN (A); QUERCETIN (B); COENZYME Q10 

(C); CREATINE (D) AND RESVERATROL E 

Treatment with 1% CoQ10 and 2% creatine Fig. 

1D was assessed for one week in an MPTP mouse 

model of PD. This treatment (40 mg/kg body 

weight once a day for 28 days byosmotic pumps) 

caused additive neuroprotective impacts against 

striatal dopamine depletion and tyrosine 
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hydroxylase (TH) neuron loss in the SNpc, 

decreased LPx and pathologic SNCA accumulation 

in SNpc neurons and DAergic neuron losss.  

Resveratrol: Fig. 1E as an antioxidant have 

extensive pharmacological effects, like anti-tumor, 

anti-mutation, anti-inflammatory, and blood fat 

regulatory effects. Resveratrol administrated orally 

or as a resveratrol liposome (20 mg/kg daily) for 14 

days could protect DAergic neurons in PD rats. The 

total ROS LEVELS showed a marked decrease, 

and the total antioxidant effect of nigral tissues 

increased markedly. Radical scavenging capacity 

and antioxidant effects of resveratrol are possibly 

due to its potent neuroprotection in PD. Also, 

resveratrol at up to 5 g induced no severe adverse 

effects in healthy controls in clinical studies due to 

its safe application for neuroprotection. 

Luteolin: Fig 2A and 5 as a polyphenolic 

compound is available in foods, such as artichoke 

leaves, peanut shells, celery, parsley, peppers, 

rosemary, olive oil, lemons, sage, peppermint, and 

thyme. It (5, 10, and 20 μM) could significantly 

attenuate an elevation in ROS production and 

prevent a decrease in mitochondria, GSH and CAT 

activities in ROS-insulted primary neurons. The 

neuroprotection of luteolin in ROS-insulted 

primary neurons can occur by the rebalance of pro-

oxidant-antioxidant status. 

Brassinosteroids: (BRs) Fig 2 as highly 

oxygenated steroids are isolated from different 

vegetables, such as Vicia faba seeds and pollen.  

Two BRs (natural) and five analogs (synthetic) 

were produced, and their neuroprotective effect 

was assessed against MPP+-related neuronal PC12 

cells. The selected BRs and analogs could protect 

neuronal PC12 cells in response to MPP+ toxicity 

and exert neuroprotective impacts because of their 

anti-oxidative effects. Also, the steroid B-ring and 

lateral chain have anti-oxidative effects, which 

need to be assessed on animal models of PD in-

vivo. 

 
FIG. 5: THE MOLECULAR STRUCTURES OF LUTEOLIN (A); IDEBENONE (B); 3Α- ACETOXYEUDESMA-1,4 

(15), 11(13)-TRIEN-12,6A-OLIDE (C); S-ALLYLCYSTEINE (D); EBSELEN (E) AND DIPHENYL DISELENIDE (F)

Idebenone Fig. 2B and Fig. 5, extended lifespan 

and improved motor function of HtrA2 knockout 

mice. Oral treatment with idebenone at 500 mg/kg 

body weight/day could extend lifespan and delay 

the deterioration of the motor phenotype.  

Idebenone acts through the down-regulation of the 

integrated stress reaction. It can ameliorate disease 

signs in HtrA2 knockout mice, which indicates that 

antioxidants are able to delay neuronal 

degeneration of the striata in these subjects.  

This finding indicates the idebenone ability to treat 

neurodegenerative diseases, such as PD. 

3α-Acetoxyeudesma-1,4(15), 11(13)-Trien-12,6a-

Olide: (AETO, Fig. 2C and Fig 5, is available in 

the leaves of Laurus nobilis L. It (0.4, 2, and 10 

μM) reduces the active form of caspase-3 and the 

concentrations of p53 associated with high levels of 

Bcl-2 dose-dependently. According to the Flow 

cytometry and Western blot results, AETO 

markedly inhibited DA-induced apoptosis and 
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suppressed intracellular tyrosinase activity and 

ROS, SNCA, and quino protein production. Thus, 

AETO inhibited DA-related apoptosis associated 

with the inhibition of intracellular tyrosinase 

activity as well as forming α-syn, quino protein, 

and ROS, in SH-SY5Y cells. 

S-allylcysteine: (SAC, Fig. 2D and Fig. 5) has 

sulfur obtained from garlic with different biological 

effects. The most common organosulfur compound 

found in aged garlic extracts was assessed for its 

protective effects against MPP+-induced oxidative 

stress in the C57BL/6J mice striatum. Pre-treatment 

with SAC at 125 mg/kg i.p. once a day for 17 days 

and also the administration of MPP + at 0.72 mg/kg 

i.c.v., caused a significant attenuation in MPP + -

related loss of DA levels in striatum (32%). SAC 

markedly blocked (100% of protection) LPx, and a 

decrease in of superoxide radical generation was 

indicated by up-regulating Cu-Zn-SOD activities in 

MPP+-induced mice. According to Behavioral 

studies, SAC improved MPP+-related impairment 

of locomotion (35%). Thus, SAC attenuated MPP 

+-induced neurotoxicity in the striatal area of mice 

through its strong antioxidant effects against 

oxidative stress caused by MPP +. 

Organoselenides: ebselen and diphenyl diselenide 

Fig 2E & F and Fig. 5 were evaluated for 

neuroprotective effects on differentiated human 

neuroblastoma SH-SY5Y cells after challenging 

with 6-OHDA was assessed. Screening of several 

organoselenides to investigate their antioxidant 

potential at 3 μM indicated a neuroprotective effect 

in these cells. These selected organoselenium 

molecules can be developed as possible 

pharmacological and therapeutic agents for treating 

PD. 

Deprenyl: Fig 3A and Fig 6 as a selective MAO-B 

inhibitor can cause a reduction in the progression of 

symptoms in PD cases. Deprenyl at 10, 20, 50, and 

100 μM could up-regulate NQO1 activity and 

expression, attenuate an elevation in quino protein 

concentrations in MPP+-treated PC12 cell lines, 

and protect against oxidative damage through 

triggering the Nrf2/ARE pathway. Also, deprenyl 

effects on NQO1 up-regulation showed a great 

attenuation in Nrf2 siRNA transfected cells. 

Nrf2/ARE signaling activation with deprenyl in 

PC12 cell lines is not dependent on MAO-B 

inhibition. 

SCM 198: or 4-guanidino-n-butyl syringate Fig. 

3B and Fig. 6 as a chemical compound has 

cardioprotective impacts in myocardial infarction 

models and also neuroprotective impacts on rat 

middle cerebral artery. Pre-treating with SCM198 

at 0.1, 1, and 10 mM could markedly increase SOD 

activity, ameliorate intracellular ROS production, 

prevent the membrane potential dissipation of 

mitochondria, decrease apoptotic cell death, down-

regulate Bax and up-regulate Bcl-2 mRNA and 

protein concentrations than 6-OHDA damaged 

cells. Administration of SCM198 (18 or 60 

mg/kg/day) intragastrically for four weeks 

markedly ameliorated apomorphine-related 

contralateral rotations of 6-OHDA-lesioned rats. 

The underlying SCM198 mechanisms to deliver 

strong euro protective impacts against 6-OHDA-

related toxicity in vivo and in vitro can be done 

through the inhibition of oxidative stress and 

apoptosis. 

Phenothiazine: Fig. 3C and Fig. 6 as an organic 

compound is available in different anti-psychotic 

and antihistaminic agents. Phenothiazine at 500 nM 

exerted strong neuroprotective activities at the 

cellular level leading to better performance in 

behavioral tests. Therefore, chain-breaking agents, 

like phenothiazine are therapeutic compounds for 

PD because they rescue DAergic toxic effect in-

vivo at nanomolar levels according to strong 

antioxidant effects.  

Although the evaluated doses in-vivo and in-vitro 

in PD models seem far below the toxic levels, side 

effects, like extrapyramidal symptoms, such as 

akathisia and tardive dyskinesia, neuroleptic 

malignant syndrome, hyper-prolactinaemia, and 

also substantial weight gain should be considered.  

The Dl-3n-Butylphthalide: (NBP, Fig. 3D and 

Fig. 6 evaluated the therapeutic potential by 

treating clinically affected PD patient. NBP at 0.1, 

1.0 and 10 μM reduced MPP + cytotoxicity through 

the suppression of the permeability transition in 

mitochondria, decreasing oxidative stress and 

elevating cellular GSH content in MPP+-received 

PC12 cells.  
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Also, NBP reduced SNCA accumulation as the 

more important component of Lewy bodies. SUN 

N8075 is a novel antioxidant Fig. 3E and Fig. 6 

that is used for stroke patients. It has a potent 

neuroprotective effect on rodent transient middle 

cerebral artery occlusion. The underlying 

neuroprotective mechanism may be through 

protecting against oxidative stress. The same 

scientist assessed the neuroprotective activities of 

SUNN8075 in-vitro on H2O2 related ROS 

production and 6-OHDA-relatedcell death in 

human neuroblastoma SH-SY5Y cell lines. Its 

putative neuroprotective impacts on MPTP-related 

neurotoxicity were assessed in a mouse model of 

PD. Treatment with SUNN8075 at micromolar 

levels significantly reduced the H2O2-induced 

generation of ROS and was protective against 6-

OHDA-related cell death. Intra-peritoneal 

SUNN8075 injections at 30 mg/kg, two-time sata 5 

h interval inhibited LPx in the forebrain of mice in-

vivo. Also, SUN N8075 at 10 and 30 mg/kg i.p., 

(two times) was protective against the MPTP-

induced reduction in TH-positive cells within the 

substantia nigra. Thus, the SUN N8075 protective 

effects in experimental PD models can be through 

its antioxidant effects Fig. 3. 

 
FIG. 6: THE MOLECULAR STRUCTURES OF DEPRENYL (A); SCM198 (B); PHENOTHIAZINE (C); DL-3N-

BUTYLPHTHALIDE (D), AND SUN N8075 (E) 

N-acetyl-l-cysteine: (NAC, Fig. 4A and Fig. 7 as a 

nutritional supplement and pharmaceutical drug is 

applied as a mucolytic agent and also for the 

treatment of paracetamol overdose. Drinking water 

supplemented with NAC (40 mM) prevents SNCA 

toxicity. Oxidative stress increases accumulating 

toxic forms of SNCA DA-dependently. Treatment 

of transgenic mice aged six weeks to one-year 

over-expressing wild-type human SNCA with 

drank water supplemented with NAC indicated that 

NAC enhanced SN levels of GSH between 5 and 7 

weeks of treatment.  

The loss of DAergic terminals after one year linked 

to SNCA over-expression showed a significant 

attenuation by NAC supplementation. Also, NAC 

markedly decreased the concentrations of human 

SNCA in the PDGFb-SNCA transgenic mice brains 

than the controls. Increased oxidative stress 

because of early GSH deficiency in the SN can 

result in increased toxic effect of SNCA in DAergic 

SN neurons, indicating that techniques for 

increasing GSH or blocking oxidative stress using 

NAC can protect against the SNCA toxic effect 

seen in PD. 

Oleanolic Acidasa triterpenoid has long been 

applied in Asian medicine because of its anti-

inflammatory effects. The synthetic triterpenoid, 

CDDO-methyl amide (2-cyano-N-methyl-3,12-

dioxooleana-1, 9(11)-dien-28 amide; CDDO-MA) 

Fig 4B and Fig 7 has been shown at least 200,000 

times more strong compared to its naturally 

occurring distant parent.  

Oleanolic acid induces NQO-1. CDDO-MA (800 

mg/kg of diet) has high neuroprotective impacts on 

MPTP and 3-nitropropionic acid neurotoxicity. The 

neuroprotective effects are because of its 

antioxidant activities, inducing pathways regulated 

by the Nrf2/ antioxidant response element (ARE) 

pathway, like GSH synthesis Fig. 4. 
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FIG. 7: THE MOLECULAR STRUCTURES OF N-ACETYL-L-CYSTEINE (A); CDDO-METHYL AMIDE (B); NP7 

(C); BROMOCRIPTINE D 

NP7: Fig. 4C and Fig 7 as a novel marine-derived 

antioxidant has many chemical molecular 

structures compared to classic phytochemicals, 

derived from lead optimization system from 

Streptomyces spp. NP7 protective effects on cell 

death caused by oxidative stress have been shown 

in neuronal as well as glial midbrain cultures 

inparkin null mice (PK-KO). NP7 at 5-10 μM could 

prevent H2O2-relatedapoptosis and midbrain 

neuronal and glial cultures necrosis in wild-type 

and PK-KO mice. NP7 inhibited activation of 

microglia and the H2O2-related dropout of DA 

neurons. NP7 can be an appropriate neuro 

protecting compound against oxidative stress in 

PD. 

Bromocriptine: Fig 4D, Fig. 7 as a DA agonist is 

applied in PD clinics since 1974 for delaying and 

minimizing deleterious motor fluctuations 

following long-term l-dopa therapy. It is a free 

radical scavenger scavenging hydroxyl and 

superoxide radicals in-vitro and is an antioxidant 

inhibiting free radical formation. The 

cytoprotective mechanism of bromocriptine in 

response to oxidative damage in PC12 cells treated 

withH2O2 was investigated. Bromocriptine at 5 

μM could up-regulate the activity and expression of 

NQO1 and attenuate an elevation in the protein-

bound quinone in these cells. It also could protect 

PC12 cell lines against oxidative damage and 

enhance the nuclear translocation and expression of 

Nrf2. The Nrf2-inducedcytoprotective and anti-

oxidative impacts of bromocriptine are associated 

with DA receptor activation. Synthetic compounds, 

like selenium, melatonin, rosmarinic acid, R-alpha-

lipoic acid, metal loporphryins compounds, 

eugenol is oborneol, and metal ion chelators 

possess neuroprotective impacts in PD models due 

to their anti-oxidative properties. 

CONCLUSIONS: Although there are many drug 

classes, like l-dopa, monoamine oxidase inhibitors, 

catechol-O-methyl transferase inhibitors DA 

agonists, and anti-cholinergic compound for the PD 

symptomatic treatment, its treatment remains 

elusive. The accurate nature of the mechanism 

leading to neurodegeneration in PD is poorly 

understood, but oxidative stress is an important risk 

factor for initiating and/or promoting the 

degeneration of DA neurons. Thus, antioxidant 

therapy can reduce or prevent the progression of 

PD. Antioxidant compounds can protect neuronal 

cells by scavenging free radicals or activating the 

antioxidant mechanisms. Several in vivo and in 

vitro animal studies recently declared assessed 

oxidative stress and ROS-related mechanisms, like 

metal chelating, radical scavenging, and/or 

regulating antioxidant enzymes. Nonetheless, 

oxidative stress is not the only deleterious factor 

causing the death of DAergic neurons' death. 

Different mechanisms associated with modulatory 

impacts on gene expression and signal transduction 

pathways are linked to the neuroprotection of 

progressive PD. The discussed compounds can act 

by regulation of such pathways and anti-oxidative 

mechanisms that can be synergistic to cause 

beneficial effects in PD. Also, combination therapy 

using antioxidants and available drugs is possibly 

helpful and increases the effectiveness of standard 

therapy to treat PD. Different types of free radicals 

are generated and antioxidants are different 

regarding their capacity to quench such free 
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radicals; thus, supplementation with different 

antioxidants and using a cocktail of agents, which 

can target one of the aspects of the degenerative 

mechanism at the correct time and using proper 

dose, may lead to better results for achieving 

promising clinical effects. Nonetheless, investigate 

the critical factors, such as the optimum doses 

required, the type of the needed biologically active 

forms, and the crossing of such compound into the 

blood-brain barrier for potential therapeutic effects. 

A comprehensive understanding of the ROS 

specificity molecular mechanisms in PD and larger 

epidemiologic investigations and randomized 

clinical trials on humans and animals should be 

considered to confirm these results and benefit 

from treating PD. 
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