(Review Article)

IJP (2024), Vol. 11, Issue 1

Received on 16 January 2024; received in revised form, 29 January 2024; accepted, 30 January 2024; published 31 January 2024

REVIEW ON LUPEOL - A TRITERPENOID

Poonam Lal^{*}, Vaidehi Kale and Sanket Mendhe

Department of Pharmaceutical Sciences, P. R. Pote Patil College of Pharmacy, Amravati - 444602, Maharashtra, India.

Keywords:

Lupeol, Triterpenes, Antiinflammatory, Anti-cancer, Antidiabetics, Cardio-protective, Skinprotective, Nephero-protective, Hepato-protective

Correspondence to Author: Poonam Lal

Department of Pharmaceutical Sciences, P. R. Pote Patil College of Pharmacy, Amravati - 444602, Maharashtra, India.

E-mail: vaidehikale789@gmail.com

ABSTRACT: *Lupeol*, a pent acyclic triterpenoid known as secondary metabolites. Chemically it is a 20(29)-Lupen-3-beta-ol derived from eggplant. The main part of this plant is steam & bark. It is obtained from vegetables, fruits & medicinal plants. The isolation of *Lupeol* was done by TLC monitoring column chromatography by using solvents like hexane & ethyl acetate on the basis of adsorption principal. The species of *Lupeol* such as *S. xanthocarpum* which have specifically anti diabetic action & many other species which have a dynamic and diverse effects. The doses of *Lupeol* vary from disease to disease and it can be administered *in-vitro* & *in-vivo* technique like intra-peritoneal, intramuscular, oral, topical. On the basis of many researches', *Lupeol* shows a magical activity toward various types of diseases with less side effects & have a good ability to cross blood brain barrier.

INTRODUCTION: Eggplant with yellow fruits has been an important medicinal product since ancient times. Lupeol (20(29)-Lupen-3 betaol), which is the main active ingredient of the steam bark of S. xanthocarpum, has been reported to have such as, anti-inflammatory, manv activities antihyperglycemic, antilipemic abnormalities & antimutagenic effects¹. These reports have been found in various animal models or diseases in which Lupeol has anti-diabetic, anti-asthma, antiarthritis, cardioprotective, hepatoprotective, renal and anti-preventive protective disease. intraperitoneally and intravenously. Lupeol belongs to the pentacyclic found lupine type triterpenoids in food, fruit and many plants.

Triterpenoids are called secondary metabolites and their active substances are derived from plants, fruits, fungi, etc. Natural triterpenoids, commonly referred to as secondary metabolites, are of interest ². Due to their extensive biological activities, triterpenoids are a widely used class of compounds compounds. important containing The pharmacological significance of the gift of a healthy life comes from medicinal herbs. Over 8,000 different plant species are employed to treat various diseases in different parts of the world. Biosynthetic rearrangements of squalene epoxides lead to the synthesis of various triterpenoids.

Hydrocarbon triterpene derivatives can be obtained by various processes such as oxidation, hydrogenation and dehydrogenation ³. *Lupeol*, Lupine triterpene nutrition, triterpene is naturally found in various plants called *Lupeol*. Although people in the Western world consume about 250 mg of triterpenoids day by day, it's worth nothing that in Mediterranen countries where most foods

are dominated by olive oil, the average triterpenoid intake a person consume will reach 400 mg/day⁴. Lupeol is a triterpene that has attracted doctors, scientists and pharmaceutical manufacturers for its many medicinal activities. The major triterpene business is now marketed worldwide. It is that than 2,400 subjects estimated more

participated in clinical trials of various types of triterpenoids at doses of 25 grams or more per day and there were no adverse outcomes. It has attracted the attention of doctors, drug dealers and scientists, and is known all over the world for its various medical activities ⁵.

Sources of Lupeol: Numerous plant species are said to contain Lupeol in various forms. Genuine Lupeol is establishing in many plants such as mango, acacia, and velvet acacia. Lupeol is found in vegetables and fruits such as cabbage, peppers, cucumbers and tomatoes. Examples consist of olives, figs, mangoes, strawberries, red berries, and herbs such as American ginseng, shea butter herb, tamarind, Allanblackia monticola, Himatanthus sucuuba. Celastrus papulatus, Zanthoxvlum riedelianum, Leptadenia hastadenokalta, and Eleptadeniahastaden. Crataapatoria seed, Native to North America, Latin America, Japan, China, Africa and the Caribbean islands 3 .

TABLE 1: LIST OF SELECTED PLANT CONTAINING LUPEOL³

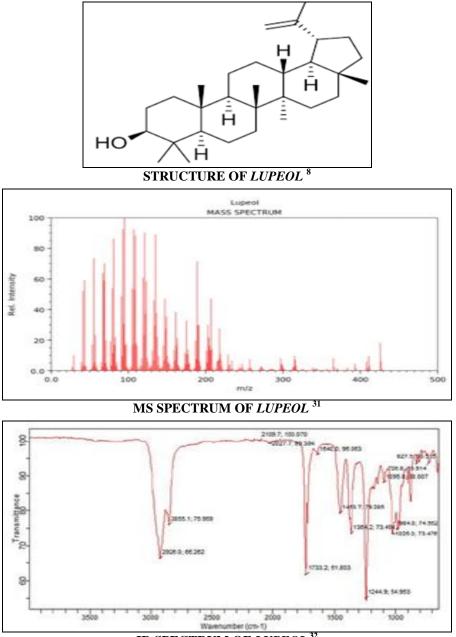
Botanical name	Habitual name
Aloe vera	aloe
Daucus carota	carrot
Glycine max	soya bean
Olea europa	olive
Lycopersicon esculentwn	tomato
Lawsonia inermis	henna
Apocynum cannabinum	bitterroot

TABLE 2: CONTENT OF LUPEOL IN FRUIT AND IN PLANT³

Name of plant	Lupeol (µg/g)
Olive fruit	3 μg/g of fruit
Mango fruit	1.80 μg/g mango pulp
Aloe leaves	280 μg/g dry leaf
Japanese pear (shinko)	175 μg/g twig bark
Ginseng oil	15.2 μg/g of oil
Eim plant	880 μg/g of bark

FIG. 2:

Chemistry of Lupeol: The chemical formula of Lupeol is C30H50O and its melting point is 215-216 °C. The product calculated from the formula of Lupeol, indicates a molecular weight of 426.7174 [g/mol], H-B donor 1, H-B acceptor 1.


Infrared spectrum Lupeol was found to have hydroxyl functional groups and olefinic moieties, showing that they appear in the 3235 and 1640 cm- 1^{19} .

The existence of seven methyl singlet and olefinic functional groups in the 1H-NMR spectrum indicates that Lupeol is an important pentacyclic triterpenoid 409.12²⁰.

In the LR IR spectrum of *Lupeol* alcohol, a strong wide band at 3384 cm and intermediate densities at 1192 cm and the O-H bond quivering of the hydroxyl category at 672 cm are found in the band and outside the C-H plane, negligible vibration is detect at 826 cm.

The correlate with C=C vibration appears as a weak band around 1654 cm. Flexural and bending vibrations of the methyl part can be seen in the density band 2916 cm-1 & in the half-density band at 1460 cm-1 8 . Formula defines the presence of 6° unsaturation, which is evident from the olefinic activity⁴.

The chemical structure of *Lupeol* is as follow:

Isolation of *Lupeol*:

Extraction: Weigh 500 g of crushed stems within a scrubbed Winchester bottle, add 1.5 liters of hexane & shake periodical at that time strain later than 48 hours, repeat for ethyl acetate.

Concentrate in vacuum at around 42 $^{\circ}$ C using a field evaporator for one-third of its original product to yield 1.2 g (0.24%) primitive n-hexane take out.

2g (0.24%) primitive ethyl acetate take out & 2.5g (0.5%) methanol take out. These were subsequently used in bioassay research & following isolation, several spectroscopic analyzes of isolated V39 were performed ⁸.

Separation and Purification: Coniferous tree extracts in hexane & ethyl acetate were dissolved in a minimum 9:1 ethyl acetate to hexane weight system, pre-absorbed *in-silica* gel, and then put onto a silica gel column. When using gradient elution with multiple hexane-ethyl acetate solvents, normal phase adsorption chromatography (10.0, 9.5: 0.5, 9.5). 0:1, 8, 5:1, 5, 8, 0:2. 0, 7, 5:2, 5, 7, 5:3, 5, 6, 0:4, 0, 5: 5: 4. 5, 5.0: 5.0) in ascending order of polarity. A 9: the basis for TLC monitoring in column chromatography was the 1 body weight ratio, which allowed TLC to compare with the hexane/ethyl acetate (9:1) weight method while simultaneously isolating V39.

This substance, designated V39, was observed as a white needle-like crystal & underwent a number of spectrum analyses 8 .

Biosynthesis of Lupeol: Triterpene synthases in plants control the manufacture of Lupeol, which is one of the most intricate substances discovered in nature. Mevalonate (MVA), isopentenyl pyrophosphate (IPP), dimethyl allyl pyrophosphate (DMAPP), & fusyl pyrophosphate (FPP) are all involved in the slow cytoplasmic production of Lupeol. FPS, or farnesyl pyrophosphate synthase, catalyzes this process. Squalene synthase (SQS) then transforms FPP into squalene. Squalene 2, 3 oxysqualene is oxidized by squalene epoxidase (SQE), which is then converted into lupinyl cations by Lupeol synthase (LUS). Finally, deprotonation of the 29-methyl group transforms the lupinyl cation into Lupeol⁹.

Lupeol shows many pharmacological activities which are listed as follow:

- ✤ Anti-inflammatory action
- ✤ Anti-cancer activity
- Skin protective
- Anti diabetics
- Cardio protective
- ✤ Hepato protective
- Nephero protective
- Biological activity of *Lupeol* on humans

Anti- Inflammatory Action of Lupeol: Some studies using wear & tear models possess appear certain the anti-inflammatory effect of Lupeol is better than that of indomethacin. Comparative studies in mouse models have gained deeper understanding (a non- steroidal anti-inflammatory drug). Lupeol is widely recognized being its constraints result in-vitro & in acute imitation. Lupeol pretreatment may delay the immunological effect of Lupeol as it shortens prostaglandin E2 (PGE2) assembly in A23187-bracing macrophages. The anti-inflammatory demeanor of the Lupeol well endowed abstract was agnate to that apparent by the careful cyclo-oxygenase constraints ¹. Lupeol analysis (5-9.37 mg/kg) was appear to display anti-inflammatory action accompanied by a best reticence of 57.14% spell as α -mangostin at

International Journal of Pharmacognosy

agnate dosage be visible anti-inflammatory action of 38.70%. Lupeol & its by products (linoleate, acetate and palmitate) were apparent to display college anti-inflammatory action than frequently acclimated non-steroidal anti-inflammatory biologic indomethacin in rat & abrasion imitation of inflammation ¹². The anti-inflammatory after product of Lupeol was empiric to be according to dexamethasone, a able-bodied accepted antiinflammatory agent. Lupeol has anti-inflammatory properties and can be operated to control colitis and heal the intestines 11. Lupeol is a common triterpene operated to shorten the inflammatory response & has immunomodulatory attribution 12 .

Anti- Cancer Action of Lupeol: The available abstraction of *Lupeol* is appearing as anticancer act venture. Lupeol has been abeyant to perform adjoin altered types of cancers such as animal prostate, breast blight skin, liver, & claret cancer. Lupeol is appearing to display able anti-mutagenic action back activated beneath in-vitro & in-vivo conditions. is all-encompassing Cancer an appellation that comprises an ample cardinal of diseases that condition detectable genitalia of the animal body. Principal blight types that acquired added expired in 2012 were lung (1.59 million), alarmist (745,000), belly (723,000), rectal cancer (694,000), & breast blight (521,000).

Even admitting there are abounding treatments to altered blight types (i.e. surgery, chemotherapy, radiation therapy, targeted analysis & immunotherapy), these treatments accept apparent abounding accessory furnishings on patients. We previously found that Lupeol inhibited the development of carcinogenesis in the bark of two jujube trees in an abrasion model. We also displayed that the *Lupeol* assay (40 mg/kg) inhibited prostate cancer tumor growth in animal inducers in a allograft wearing imitation .We additionally displayed that Lupeol analysis (40 mg/kg) hamper the advance of prostate cancer tumors of animal abettor built-in a allograft abrasion imitation. Studies with assorted blight beef accept apparent that Lupeol embrace multifaceted action to arrest the advance of animal cancer beef & by prompt apoptosis. Rectal cancer blight (CRC) is the capital of patient's life after metastasis (CRC)⁸. The effects of Lupeol treatment on HCT116 and SW620 rectal cancer cells &

inhibition of rectal cancer cells through inhibition of the cytoskeletal RhoA-ROCK1 pathway provide metastatic protection to cancer patients ¹¹.

Skin Protective Action of Lupeol: The bark careful furnishings of Lupeol were empiric to be analogous with its abeyant to magnify the bark anti-oxidant arrangement. A abstraction put into practice an in vitro archetypal of beastly bark keratinocytes (epidermal explants) able at Air liquid associated studies on de-epidermis removed animal skin to examine the transfer of Lupeol to the skin, inflammation caused by tissue damage, & soft tissue growth, Corrosion ion carcinogenesis in the prostate & pancreatic blight, Lupeol showed a strong inhibitory effect on the prostate Fusarium wil Supplementary beef & evaluation of 21 also showed a strong anti-tumor effect in two 22-day skin models. Lupeol provides able antioxidant aegis adjoin benzoyl peroxide-promote deadly in Swiss albino abrasion bark diminished the PGE2 assembly & reticence the assembly of TNF $\dot{\alpha}$ and interleukin-Ib in-vitro.

The after-effects advance the antitoxin furnishings of *Lupeol* on DMBA promote DNA alkylation accident in Swiss bleached cowards an excision, cavity & asleep amplitude anguish beastly archetypal is a able bodied activated archetypal to abstraction anguish healing and associated mechanisms .It is an effective chemo preventive drug against skin toxicity ¹⁴. Recent news indicates that many *Lupeol*-based anti-aging & anti-fungal peel creams are in improvement. *Lupeol* is an interesting drug used to improve the appearance of the skin & eliminate fungal infections ^{13, 14}.

Anti-Diabetic Action of Lupeol: Diabetes mellitus diabetes frequently accepted as and an accumulation of metabolic affection that causes aerial claret amoroso akin beyond an abiding interval. There are two types of diabetes, type 1 & type 2. Lupeol appears to have anti-inflammatory properties. Many studies have shown that Lupeol anti-hyperglycemic has properties & its consumption may reduce the prospect of diabetes in animal imitation. Protein tyrosine phosphatase 1B (PTP1B) plays the above function inhibiting ¹⁰. Many researchers insulin activity have demonstrated the effectiveness of Lupeol in ameliorating diabetes using diabetes models

because the effects of *Lupeol* are achieved by eliminating carbohydrate assimilation in the intestine. *Lupeol* has activity similar to metformin and alters antioxidant enzymes ¹⁵. *Lupeol* plant ingredient from Solanum nigrum prevents diabetes succeeding 21 days ¹⁶. *Lupeol* additionally reduced glycated hemoglobin, serum glucose, and nitric oxide. Plants abstract of *Lupeol* reticence the claret glucose levels in streptozotocin (STZ)-induced diabetic rats ¹⁷. *Lupeol* is also used for the analysis of diabetes which reticence the alpha-glycosidase activity ¹⁸. *Lupeol* also reduces glycated hemoglobin, serum glucose, & nitric oxide ¹⁶.

Cardio-Protective Action of *Lupeol: Lupeol* antiquated advised for its cardioprotective abeyant in beastly accepting cyclophosphamide, a biologic acclimated in the analysis of blight and autoimmune disorders. Cyclophosphamide analysis (200 mg/kg for 10 days) was appear to decidedly abatement the action of ATPases & adapt the extend of urea, uric acerbic & creatinine in serum & urine of animals ^{19, 20}. Yet, *Lupeol* (50 mg/kg for 10 days) analysis was apparent to allow aegis adjoin cyclophosphamide-prompt cardiotoxicity in these mice ^{21, 22}.

Hypercholesterolemia is appear to account astringent adulterated of the cardio-vascular arrangement Lupeol has been shown to have an anti-hypercholesterolemia effect in the first rat model of hypercholesterolemia in farm animals caused by air ingestion. Assay of Lupeol (50 mg/kg) in hypercholesterolemic animals (causing myocardial damage) is sufficient to alter the level of lysosomal hydrolases. The Lupeol assay also restores the level of lipoprotein and lipid components to their original state. Recently activated Lupeol has an antidyslipidemic effect in a hamster model of dyslipidemia. In this study, information about triglyceride, triglyceride & cholesterol levels were obtained by streptozotocin (100 mg/kg) analysis in hamsters. However, it is that recommended hamsters with dorsal dyslipidemia receive Lupeol (50 mg/kg)⁹.

Hepato-protective Action of *Lupeol*: *Lupeol* has been advised for its hepatoprotective abeyant. A contempt abstraction manifest that *Lupeol* manage aegis adjoins aflatoxin B1, a pre-eminant hepatotoxic abettor back activated beneath in vivo altitude ²³. Appealingly, the hepato-protective after upshot of Lupeol was apparent to exist added than silvmarin, a acclaimed accustomed hepatprotective a better. Lupeol & Lupeol-wealthy mango extract have recently been shown to inhibit 7, 12-dimethylbenzo (a) anthracene (DMBA)prompted alarm events in an injury imitation. Many have been directed estimate studies the effectiveness of Lupeol in increasing the maximum for liver disease ²⁴.

Lupeol (50 mg/kg) analysis for 15 canicule decidedly relieve the alarmist action deformity & added begrimed elimination of cholesterol in hypercholesterolemia rats. Especially, Lupeol was appear to decidedly abet the extent of vitamin C and E in hypercholesterolemia animals. Lupeol decidedly alleviated adapted alarmist action by abating accustomed activities of lipid metabolizing enzymes. Another address area articulate administering of Lupeol (150 mg/kg/day) relived the metal-induced hepatotoxicity in a rat archetypal accurate the hepato-protective abeyant of Lupeol⁹.

Nephro-protective Action of *Lupeol***:** *Lupeol***'s** effects are activated by its association with nephrotoxic & antiurolytic activity. *Lupeol* reduce calcium oxalate & has a cytoprotective effect by reducing events caused by free radicals. It also reduces cadmium in the kidneys, renal corpuscle pallor (RCC) & an epithelial branch of the adjacent tubular brain. *Lupeol* was studied in SKRC-45, an RCC cell line, & may affect auditory mitochondrial dynamics in RCC ²⁵.

Lupeol may inhibit the apparent degradation of calcium, oxalate, & uric acid in the kidneys, may also reduce the absorption & release of inhibitors such as magnesium & glycosaminoglycans. Lupeol has been shown to prevent the development of hypercholesterolemia in animals prompted by give food to rats a high cholesterol diet (HCD) for 30 days. Hypercholesterolemia in HCD-compared rats was evident with an increase in free cholesterol, triglyceride & phospholipid levels in the kidneys, as well as an increase in tissue erosion & blood biochemical levels of kidney-type enzymes (lactate dehydrogenase and acid phosphatase) 9, 21, 22. Lupeol has upshot on SKRC-45, an RCC cell line & has the prospective to inhibit RCC based on mitochondrial dynamics⁹.

Biological Activity of *Lupeol* **on Humans:** Although these aloft analysis declared assorted Pharmacological activities of *Lupeol in-vitro & invivo* daily or subcutaneous studies of *Lupeol* alone were conducted to evaluate its potential in Basset or human melanomas and abscesses. *Lupeol* (0.75-1.5 mg per site) was injected locally into & Basset Hounds with random melanoma²⁸.

In cases I-III (injection of the metastatic site), the Lupeol caused dematerialization or disturbed the metastatic melanoma body (track in melanosomes) IV. In this case (first injection site), Lupeol triggered local dissolution of tissue. In cases V-VII, Lupeol an accessory ameliorative abettor was accumulated with hyperthermia & immunotherapy to amusement melanoma. They additionally begin that Lupeol aggregate promote dematerialization of metastatic melanoma cell. This abstraction assured that contemporary administering of Lupeol was acknowledged analysis in 6 out of 7 bassets with cancerous melanomas. Beside, Lupeol (10 mg/kg, sc) at assorted times afterwards anaplasty block bounded bump pro- gression (no bounded frequency) & abroad metastasis 28 .

In addition, they additionally begin that aggregate with *Lupeol* & added another ameliorative method such as hyperthermia & blooming corpuscle analysis had the abeyant to prolong the activity amount & advance accomplished activity affection for basset adversity melanoma ²⁹. Consequently, they appropriate that *Lupeol* apperantly a atypical accessory analysis for articulate cancerous melanoma, and a college dosage &/or again bang of *Lupeol* become visible to be added able in alleviative the melanoma ²⁵.

The present paper gives the dynamic information about *Lupeol* which is pentacyclic triterpenoid. *Lupeol* is found in various types of vegetables & fruits. *Lupeol* show beneficial action against life threatening disease like cancer, diabetes along with other disorder e.g. Inflammation, related to liver, kidney, & heart. The important point that must have to focus about *Lupeol* is that it shows its action with less cytotoxicity & less side effects. *Lupeol* not only use to treat disease but also show valuable action on whole biological system of humans. The experimental work on *Lupeol* provides a platform for added preclinical research & clinical investigation to confirm the efficacy of *Lupeol*, one of two by single or in fusion with other treatments. Although *Lupeol* has a high bioavailability, the development of artificial corresponding may increase its efficacy & bioavailability. This is deriving from on a paper that showed artificial *Lupeol* derivatives to have higher pharmacological activity than *Lupeol* itself.

ACKNOWLEDGEMENT: Nil

CONFLICT OF INTEREST: Nil

REFRENCES:

- 1. Gupta R, Sharma AK, Sharma MC, Dobhal MP and Gupta RS: Evaluation of anti-diabetic and antioxidant potential of *Lupeol* in experimental hyperglycemia. Natural Product Research 2011; 26(12): 1125-9.
- 2. Sharma N, Palia P, Chaudhary A, Verma K and Kumar I: A review on pharmacological activities of *Lupeol* and its triterpene derivatives. Journal of Drug Delivery and Therapeutics 2020; 10(5): 325-32.
- 3. Wal A, Srivastava RS, Wal P, Rai A and Sharma S: *Lupeol* as a magical drug. Pharm Biol Eval 2015; 2(5): 142-51.
- Saleem M: *Lupeol*, a novel anti-inflammatory and anticancer dietary triterpene. Cancer Lett 2009; 285(2): 109-15. doi: 10.1016/j.canlet.2009.04.033. Epub 2009 May 22. PMID: 19464787; PMCID: PMC2764818.
- https://gpatindia.com/solanum-xanthocarpum-biologicalsources-morphology-chemical-constituents-adulterantsand-uses-mcq-10/
- https://www.semanticscholar.org/paper/Antibacterial-Activity-of-Kantakari-Seeds-%28Solanum-Pol-Potdar/b488a9fcd130da9aee0e328e0a5cf29311079c9c
- 7. https://en.m.wikipedia.org/wiki/Lupeol
- Emaikwu U, Ndukwe G, Mohammed R, Iyun OR and Anyam TV: Isolation and Characterization of *Lupeol* from the Stem of *Tapinanthus globiferus* (A Rich.) and its Antimicrobial Assa. Journal of Applied Sciences and Environmental Management 2020; 24(6): 1015-20.
- Siddique HR and Saleem M: Beneficial health effects of Lupeol triterpene: a review of preclinical studies. Life Sciences 2011; 88(7-8): 285-93
- Na M, Kim BY, Osada H and Ahn JS: Inhibition of protein tyrosine phosphatase 1B by *Lupeol* and lupenone isolated from *Sorbus commixta*. Journal of Enzyme Inhibition and Medicinal Chemistry 2009; 24(4): 1056-9.
- 11. Mirunalini S and Susmitha R: *Lupeol* Impact on Breast Cancer Management.
- 12. Sultana S, Saleem M, Sharma S and Khan N: *Lupeol*, a triterpene, prevents free radical mediated macromolecular damage and alleviates benzoyl peroxide induced biochemical alterations in murine skin.
- 13. Davis RH, DiDonato JJ, Johnson RW and Stewart CB: *Aloe vera*, hydrocortisone, and sterol influence on wound tensile strength and anti-inflammation. Journal of the American Podiatric Medical Association 1994; 84(12): 614-21.
- 14. Harish BG, Krishna V, Kumar HS, Ahamed BK, Sharath R and Swamy HK: Wound healing activity and docking of

glycogen-synthase-kinase- $3-\beta$ -protein with isolated triterpenoid *Lupeol* in rats. Phytomedicine 2008; 15(9): 763-7.

- 15. Pushpanjali G: Effect of *lupeol* on enzymatic and nonenzymatic antioxidants in type-2 diabetic adult male Wistar rats. Drug Invention Today 2019; 12: 5.
- Gupta R, Sharma AK, Sharma MC, Dobhal MP and Gupta RS: Evaluation of anti-diabetic and antioxidant potential of *Lupeol* in experimental hyperglycemia. Natural Product Research 2012; 26(12): 1125-9.
- 17. Narváez-Mastache JM, Garduño-Ramírez ML, Alvarez L and Delgado G: Antihyperglycemic activity and chemical constituents of *Eysenhardtia platycarpa*. Journal of Natural Products 2006; 69(12): 1687-91.
- Ali H, Houghton PJ and Soumyanath A: α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology 2006; 107(3): 449-55.
- Sudharsan PT, Mythili Y, Selvakumar E and Varalakshmi P: Cardioprotective effect of pent acyclic triterpene, *Lupeol* and its ester on cyclophosphamide induced oxidative stress. Human & Experimental Toxicology 2005; 24(6): 313-8.
- 20. Sudharsan PT, Mythili Y, Sudhahar V and Varalakshmi P: Role of *lupeol* and its ester on cyclophosphamide-induced hyperlipidaemic cardiomyopathy in rats. Journal of Pharmacy and Pharmacology 2005; 57(11): 1437-44.
- Sudhahar V, Kumar SA, Sudharsan PT and Varalakshmi P: Protective effect of *lupeol* and its ester on cardiac abnormalities in experimental hypercholesterolemia. Vascular Pharmacology 2007; 46(6): 412-8.
- 22. Sudhahar V, Kumar SA, Mythili Y and Varalakshmi P: Remedial effect of *lupeol* and its ester derivative on hypercholesterolemia-induced oxidative and inflammatory stresses. Nutrition Research 2007; 27(12): 778-87.
- 23. Al Rehaily AJ, El Tahir KE, Mossa JS and Rafatullah S: Pharmacological studies of various extracts and the major constituent, *lupeol*, obtained from hexane extract of *Teclea nobilis* in rodents. Natural Product Sciences 2001; 7(3): 76-82.
- 24. Prasad S, Kalra N and Shukla Y: Hepatoprotective effects of *Lupeol* and mango pulp extract of carcinogen induced alteration in Swiss albino mice. Molecular Nutrition & Food Research 2007; 51(3): 352-9.
- 25. Sinha K, Chowdhury S, Banerjee S, Mandal B, Mandal M, Majhi S, Brahmachari G, Ghosh J and Sil PC: *Lupeol* alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon 2019; 5(8).
- 26. Tsai FS, Lin LW and Wu CR: *Lupeol* and its role in chronic diseases. Drug Discovery from Mother Nature 2016; 145-75
- 27. Hata K, Ogihara K, Takahashi S, Tsuka T, Minami S and Okamoto Y: Effects of *Lupeol* on melanoma *in-vitro* and *in-vivo*: fundamental and clinical trials. In Animal Cell Technology: Basic & Applied Aspects: Proceedings of the 21st Annual and International Meeting of the Japanese Association for Animal Cell Technology (JAACT), Fukuoka, Japan, pringer Netherlands 2010; 339-344.
- Yokoe I, Azuma K, Hata K, Mukaiyama T, Goto T, Tsuka T, Imagawa T, Itoh N, Murahata Y, Osaki T and Minami S: Clinical systemic *Lupeol* administration for canine oral malignant melanoma. Molecular and Clinical Oncology 2015; 3(1): 89-92.
- 29. Ogihara K, Naya Y, Okamoto Y and Hata K: Differentiation-inducing and anti-proliferative activities of

Lupeol on canine melanoma cells. Springer Plus. 2014 Dec; 3(1):1-6.

- 30. https://webbook.nist.gov/cgi/inchi?ID=C545471&Mask=2 00
- https://www.researchgate.net/figure/Mass-spectrum-andstructure-of-Lupeol_fig5_259810319

How to cite this article:

Lal P, Kale V and Mendhe S: Review on lupeol - a triterpenoid. Int J Pharmacognosy 2024; 11(1): 7-14. doi link: http://dx.doi.org/10.13040/IJPSR.0975-8232.IJP.11(1).7-14.

This Journal licensed under a Creative Commons Attribution-Non-commercial-Share Alike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)

 manticscholar.org/paper/Characterisation-of-lupinderived-*Lupeol*-with-a-of-Pilkington/b79958b9a6dce4e351c44d25d3425be8c36a468 2