IJP (2020), Vol. 7, Issue 3

Received on 22 January 2020; received in revised form, 18 March 2020; accepted, 21 March 2020; published 31 March 2020

AN UPDATED PHYTOPHARMACOLOGICAL REVIEW ON HAMELIA PATENS JACO.

Chetna Kaushik^{*} and Manju Vyas Singh

Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar Sector 3, New Delhi, Delhi - 110017, India.

Keywords:

Hamelia patens, Rubiaceae, Phytoconstituents, Pharmacological activities

Correspondence to Author: Chetna Kaushik

Masters in Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar Sector 3, New Delhi, Delhi - 110017, India.

E-mail: kaushik1993c2@gmail.com

ABSTRACT: Hamelia patens Jacq. (Rubiaceae) also known as firebush is an ornamental plant native to Florida and has been used traditionally in a number of conditions, including diabetes, pain, skin diseases, respiratory problems, dysentery, etc. This review aims to provide an overview of the plant profile, its phytoconstituents and pharmacological activities. Alkaloids of indole and oxindole class like rumberine, pteropodine, isopteropodine, mitrajavine, flavonoids like kaempferol-3-O-rutinoside, 7-0-a-L-rhamnopyranoside, 5, 7, 2', 5'tetrahydroxyflavanone 7-D-gluco-pyranoside, (-) epicatechin, 5, 7, 2', 5'tetrahydroxyflavanone, narirutin and rosmarinic acid, carbohydrate, proteins and tannins have been identified and isolated from firebush. Different extracts of different parts of Hamelia patens have shown various pharmacological activities like antioxidant, antimicrobial, anthelmintic, antidepressant, acetylcholinesterase inhibitory, antilithiatic, hepatoprotective, wound healing, blood sugar lowering, cytotoxic and nanotechnological research has also been conducted. Further research is required for the identification and isolation of bioactive constituents, which might be used as potential drugs in the near future.

INTRODUCTION: Nature has been providing remedies for almost all diseases since times immemorial. The shift towards plants for the discovery of new entities is tremendously increasing as plants are a safer and cheaper alternative to synthetic drugs. With the emerging diseases, the focus towards natural resources for their cure is also increasing. Hamelia patens Jacq. commonly-known as firebush, scarlet bush, hummingbird bush, and by many other vernacular names, is an ornamental plant native to Florida. This plant has been investigated for a number of biological activities. and manv bioactive constituents have been identified and isolated from different parts of the plant.

This review summarizes the profile of the plant in terms of its activities and phytochemical constituents.

1.1. Plant Description: Hamelia patens Jacq. belonging to the Rubiaceae family is an ornamental plant native to tropical America and grows in a tropical or subtropical climate. It is an evergreen tree consisting of orange-red tubular flowers 1 . The genus Hamelia Jacq. consists of woody shrubs (Wealth of India) and is distributed from Florida and Mexico to Paraguay. There are two sections in this genus: section Hamelia and section Amphituba. The Hamelia section has red, orange, or yellow tubular flowers, and section Amphituba consists of yellow infundibular or trumpet-shaped flowers².

1.1.1. Synonyms: Hamelia erecta Jacq., Hamelia coccinea, Hamelia pedicellata Wernh, Hamelia latifolia Reichb. ex DC.

1.1.2. Species of Hamelia: *H. axillaris*, *H.* barbata, H. calycosa, H. chrysantha, H. cuprea, H. longipes, H. macrantha, H. magnifolia, H. ovate, H. pepillosa, H. patens, H. rostrata, H. rovirosae, H. sanguine, H. ventricosa, H. xerocarpa, H. xorullansis, H. grandiflora, H. magniloba, H. ovata, H. pedicellata, H. tubifora, H. viridifolia, H. brachystemon, H. brittoniana, H. axillaris and H. lutea^{3,4}.

1.1.3. Taxonomical Classification: ⁵

Scientific name	:	Hamelia patens
Kingdom	:	Plantae
Subkingdom	:	Tracheobionta
Subdivision	:	Spermatophyta
Division	:	Magnoliophyta
Class	:	Magnoliopsida
Subclass	:	Asteridae
Order	:	Rubiales
Family	:	Rubiaceae
Genus	:	Hamelia Jacq.
Species	:	Hamelia patens Jacq.
Class Subclass Order Family Genus Species	:	Magnoliopsida Asteridae Rubiales Rubiaceae Hamelia Jacq. <i>Hamelia patens</i> Jacq

Common Names: Firebush, scarlet bush, hummingbird bush, butterfly bush, firecracker

bush, bálsamo, coloradillo, madura zapote, treshojitas, chichipín⁶, polly red head⁷ tsapuk⁸, coral, trompetilla, jicarillo^{92, 10, 11}.

1.1.4. Description: The plant is a shrub or small tree with year-round flowering and grows to about 6-12 ft. height and spreads to about 5-8 ft. It can be propagated by seeds, cuttings, or air layers ¹².

1.1.5. Distribution: Scarlet bush is found throughout tropical and sub-tropical America. It is widespread from Mexico to Paraguay. It is also indigenous to Bahamas and Caribbean 2 .

1.2 Plant morphology: Leaves are simple, elliptic to ovate, light green or dark green varying to purplish or red depending upon cultivars with entire blade, wavy margin and short petiole (about 1 - 1/2 inches long); arranged in whorls of 3-5 leaves **Fig. 1** and about 3 - 8 inches long and 1 - 4 inches wide. The surface is glabrous with villous hairs on both upper and lower side¹² **Fig. 2**.

FIG. 1: TWIG OF H. PATENS

Flowers are arranged in cymes with forked terminal and axillary inflorescence with Long and stamens inserted within a fused corolla tube. FIG. 2: LEAF OF H. PATENS

The color changes from yellow to orange when buds mature, ultimately becoming orange-red upon pollination $^{2, 12}$ Fig. 3.

FIG. 3: H. PATENS FLOWER

Stem are greenish-brown with 0.5 to 1.2 cm diameter and cylindrical shape ¹³ Fig. 4. Fruits are edible with oval to elliptic shape Fig. 5A and green in color changing to red while ripening and ultimately to purplish-black when mature Fig. 5B $_{12,4}$

FIG. 4: STEM OF H. PATENS

TABLE 1: ETHNOMEDICINAL USES

FIG. 5: (A) AND (B) FRUIT OF H.PATENS

1.3. Pollinators: Hummingbirds, bees, and butterflies ³.

1.4. Ethnobotany: *H. patens* has been used traditionally for a number of conditions like pain, rheumatism, inflammation, diabetes, wound healing, menstrual cramps, snakebite, scorpion bite, and fever, *etc.* ^{3, 10, 14, 15} **Table 1**.

S. no.	Region	Part	Admi	nistration	Ailment
1	Papantla, Veracruz,	Leaves	Fresh	Decoction	Blood circulation, Colitis, Diabetes,
	Mexico				gastritis, Menstruation ¹¹
				Infusion	Anemia, Diabetes, gastritis, High pressure
				Burned	Breastfeeding
				Dry	Decoction
		Roots	Fresh	Decoction	Ulcers
				Squeezed	Skin problems, Fungus
				Bath	Wounds
			Dry	Decoction	Respiratory system
2	Tlanchiol, Hidalgo,	Aerial	Oral	Infusion	Diuretic, Gastritis, Stomach pain, Wounds
	Mexico	parts and			10
		leaves		Macerated	Kidney problems
			Topical	Infusion	Gastritis, Wounds
3	Guatemala	Leaves	Int	fusion	Type 2 diabetes ⁶
4	Belize	Whole	1	Tea	Menstrual cramps and High blood pressure
		plant			1
			Te	a bath	Sores and skin rashes
		Leaves	Topic	alGrinded	Sores and skin rashes
5	Isthmus-Sierra	Flower		-	Dermatological diseases ¹⁶
	(Oaxaca, Mexico)	and Leaf			17
6	Pachalur hills of	Berries	"Varithelı	munai" Syrup	Blood dysentery ¹⁷
	Dindigul district in				
	Tamil Nadu, Southern				
	India				
7	WexternPanama	Stem-Bark	Int	fusion	Snake bites and as a post-partum aid to
					relieve pain ¹⁸
8	Achuar (Jivaro) of	Leaves	Dec	coction	Malaria ⁸
	Amazonian Ecuador				

2. Phytoconstituents: Biosynthesis and production of monoterpenoid indole and oxindole alkaloids was studied by elicitation using jasmonic acid as elicitor ¹⁹. Tryptophan, glutamine, glutamic acid,

sucrose, chlorogenic acid, p-coumaric acid and strictosidine along with monoterpenoid oxindole alkaloids palmirine and pteropodine were found to be prominent in plants treated with jasmonic acid and loganic acid, aspartic acid, acetic acid, and glucose were high in control plants which was in accordance to analysis from Methanol/Water fractions. Increased level of 1-deoxy-D-xylulose-5phosphate synthase, strictosidine synthase, and

TABLE 2: PHYTOCONSTITUENTS PRESENT

STR activity was followed by increased levels of isopteropodine, pteropodine, rumberine, specio-phylline, palmirine, and hameline in treated plants. Tryptophan was also confirmed to be a precursor of MIA and MOA *via* the shikimate pathway.

S. no.		Phytoconstituent	Extract
1	Indole	Aricine	Acetone leaves extract ²⁰
	Alkaloid		Micro propagated plantlets ²¹
		Oxindole aricine	Acetone leaves extract ²⁰
		Mitrajavine	Dichloromethane leaves extract ²²
		Tetrahydroalstonine	Micro propagated plantlets ²¹
2	Oxindole	Palmirine	Ethanolic aerial parts extract ²³
	Alkaloid		Dichloromethane leaves extract ²²
			Micro propagated plantlets ²¹
		Rumberine	Ethanolic aerial parts extract ²³
			Dichloromethane leaf extract ²²
			Micro propagated plantlets ²¹
		Isopteropodine	Dichloromethane leaf extract ^{24, 22}
		1 1	Micro propagated plantlets ²¹
		(-)-Hameline	Micro propagated plantlets ²¹
		Pteropodine	Micro propagated plantlets ²¹
		Uncarine-F	Micro propagated plantlets ²¹
		Speciophylline	Micro propagated plantlets ²¹
3	Phenylethylamine	Ephedrine	Methanolic leaf extract ²⁵
4	Flavanone glycoside	5, 7, 2', 5'tetrahydroxyflavanone-7-rutinoside	Methanolic aerial parts extract ²⁶
5	Flavan-3-ol	Catechin	Hexane leaves extract ²⁰
			Methanolic leaves extract ²⁷
			70% ethanolic leaves extract ²⁸
6	Esterof caffeic acid	Chlorogenic acid	Methanolic leaves extract ²⁷
		-	Ethanolic plant extract ²⁹
7	Flavonoid	(-)-Epicatechin	Methanolic extract of leaves ²⁷
		-	Ethyl acetate extract ²²
8	Polyphenol	Caffeic acid	Ethanolic plant extract ²⁹
9	Flavonoid	Quercetin	Ethanolic plant extract ²⁹
10	Flavonoid	Kaempferol-3-O rutinoside	Ethyl acetate extract ²²
11	Flavonoid	β-carotene	Hexane extract of aerial parts ⁹
12	Cyclic polyol	Quinic acid	70% leethanolic extract of leaves ²⁸
13	Phenylpropanoids	Hydroxycinnamic acid	70% ethanolic extract of leaves $\frac{28}{20}$
14	Alkyl caffeate ester	Caffeoylquinic acid	70% ethanolic extract of leaves $\frac{28}{2}$
15	Proanthocyanidin	Procyanidin β-2	70% ethanolic extract of leaves $\frac{28}{2}$
16	Flavonol glycoside	(+)-Catechin 3-O-glucoside	70% ethanolic extract of leaves $\frac{28}{20}$
17	Dihydrochalcones	3-hydroxyphloretin-2'-O-glucoside	70% ethanolic extract of leaves 28
	flavanoid		a r
18	Flavonoid	Narirutin, Rosmarinic acid	Methanolic extract of aerial parts ²⁶
19	Terpene	(6E, 10E, 14E, 18E)-2, 6, 10, 14, 18, 23-	Hexane extract of leaves ³⁰
		hexamethyl-2, 6, 10, 14, 18, 22 tetracosahexaene	20
20	Triterpenoid	Rotundic acid,	Acetone extract of leaves 20
		2E-3, 7, 11, 15, 19-pentamethyl-2-eicosaen-1-ol,	Hexane extract of leaves ³⁰
		β-sitosterol, stigmasterol,	20
21	Pentacyclic	24-methylenecycloartan-3ß-ol,	Acetone extract of leaves ²⁰
	triterpenoid	ursolic acid	20
22	3-β-hydroxy steroid	24-methylcycloart-25-en-3ßol	Acetone extract of leaves ²⁰
23	Triterpenoid	Stigma-4-ene-3, 6-dione	Aerial parts ³¹
24	Saturated and	2,3-dihydro-3,5-dihydroxy-6-methyl4H-pyran 1,	Methanolic extract of leaves ³²
	Unsaturated aliphatic	3-propanediol, 2-ethyl-2-(hydroxymethyl), mome	
	hydrocarbons	inositol and squalene	

Part	Content	Quantity (mg/g)
Leaves	Starch	$37.5 \pm 0.41 \text{ mg/g}$
	Soluble sugars	$48.2\pm0.64~mg/g$
	Proteins	$87.8 \pm 0.79 \text{ mg/g}$
	Lipid contents	$28.5 \pm 0.77 \text{ mg/g}$
	Phenol contents	$104.6 \pm 1.12 \text{ mg/g}$
Stem	Starch	$28.6 \pm 1.12 \text{ mg/g}$
	Soluble sugars	$44.5\pm0.89~mg/g$
	proteins	$34.5 \pm 1.14 \text{ mg/g}$
	Lipid contents	$2.6 \pm 0.41 \text{ mg/g}$
	Phenol contents	$50.7 \pm 1.41 \text{ mg/g}$
Bark	Starch	$30.4 \pm 1.51 \text{ mg/g}$
	soluble sugars	$52.6 \pm 1.14 \text{ mg/g}$
	Proteins	$94.2 \pm 1.41 \text{ mg/g}$
	Lipid contents	$5.7 \pm 1.12 \text{ mg/g}$
	Phenol contents	$47.2\pm0.89~mg/g$

Quantitative Estimation: Starch, protein, lipid, and phenol content of various parts of *H. patens* were quantitatively evaluated. The results are summarized in **Table 3**³³.

3. Biological Activity:

Total Phenols: Quantitative estimation of total phenolic content (T.P.C.) of different extracts of the plant has been done by several researchers, as given in **Table 4**.

Total Flavonoids: The total flavonoid content of Petroleum ether, Chloroform, and Methanol was

8.47 \pm 0.67, 15.09 \pm 1.21, and 43.42 \pm 1.41 mg rutin equivalents per gram of dried extract, respectively when determined using Aluminium chloride colorimetric method ³⁴.

TABLE 4: TOTAL	PHENOLIC	CONTENT
-----------------------	----------	---------

S.	E	Extract	Total phenolic content (mg
no.			gallic acid equivalent per
			gm)
1	Stem	Petroleum	19.083 ± 1.12 ³⁴
		ether	
		Chloroform	30.58 ± 1.28
		Methanolic	99.25 ± 1.39
2		Crude	141.58 +/- 11.99 ³⁵
		methanolic	
		Hexane	33.96 +/- 1.13
		Ethyl acetate	375.18 +/- 13.09
		Butanol	132.08 +/- 3.62
3	Bark	Aqueous	413.8 ³⁶
		Acetone	303.6
		Methanolic	310.8
4	Stem +	Aqueous	354.3 ³⁶
	Bark	(25 + 25 g)	
		Aqueous	437.5
		(15 + 35 g)	
		Aqueous	296.2
		(35 + 15 g)	

Antioxidant Activity: Various extracts of *Hamelia patens* has been evaluated for antioxidant activity using different assays, and the results obtained are summarized in **Table 5**.

 TABLE 5: IC₅₀ VALUES OF DIFFERENT EXTRACTS IN DIFFERENT ANTIOXIDANT ASSAYS

S. no.	Assay	Extract		Result (IC ₅₀)
		Part	Solvent	
1	DPPH	Leaf	Ethanolic (70%)	116 µg/mL ³⁷
			HEX	- 30
			DCM-EtOAc	158.2 ± 9.6 ³⁰
			MeOH-EtOAc	IC ₅₀ 18.6 mg/mL ³⁰
			MeOH–Aq.	93.9 ± 12.1^{-30}
		Stem	Petroleum ether	250.58 ³⁴
			Chloroform	46.03 ³⁴
			Methanol	83.44 ³⁴
			Methanolic crude	$77.87 \pm 5.67 \ \mu g/mL^{35}$
			Hexane	$236.64 \pm 26.32 \ \mu g/mL^{35}$
			Ethyl acetate	$45.87 \pm 2.24 \ \mu g/mL^{35}$
			Butanol	$50.97 \pm 0.85 \ \mu g/mL^{35}$
2	Nitric oxide scavenging	Stem	Petroleum ether	219.97 34
	assay		Chloroform	61.33 34
			Methanol	94.57 ³⁴
3	Hydrogen peroxide	Stem	Petroleum ether	172.54 34
	scavenging assay		Chloroform	66.09 ³⁴
			Methanol	93.51 ³⁴
		Bark	Aqueous	76.11 ± 0.01^{-36}
			Acetone	93.07 ± 0.06^{-36}
			Methanolic	91.09 ± 0.12^{-36}
		Stem + Bark	Aqueous $(25 + 25 \text{ g})$	81.09 ± 0.12^{-36}
			Aqueous $(35 + 15 g)$	82.13 ± 0.20^{-36}
			Aqueous $(15 + 35 g)$	73.88 ± 0.01^{-36}
4	Metal chelating activity	Stem	Petroleum ether	294.12 34
			Chloroform	126.90 ³⁴
			Methanol	112.36 ³⁴

Along with 22 Mexican species, free radical scavenging and antioxidant activities of hexane, acetone, and methanol extracts of the aerial parts of *H. patens* were studied. The β -carotene bleaching method and DPPH radical scavenging assay were used. Methanolic extract was found to have greater antioxidant activity than acetone least activity was observed in the hexane extract of *Hamelia patens*. *H. patens* showed similar activity as BHA (Butylated Hydroxyl Anisole) and higher activity than natural anti-oxidant like α -tocopherol⁹.

Anti-inflammatory Activity: Hexane, chloroform, and methanolic extracts of the plant have been evaluated for topical anti-inflammatory activity using croton oil ear edema mice model and chloroform extract was found to have the highest activity with ID 255 μ g/cm² which was comparable to indomethacin $(ID_{50} = 93 \ \mu g/cm^2)^{-38}$. In carrageenan-induced paw edema in rats (oral) and TPA (12- tetradecanoylphorbol-13-acetate) induced ear edema in mice (topical), HEX extract at 500 and 200 mg/kg b. wt significantly decreased the inflammation. The highest myeloperoxidase activity inhibition was shown by MeOH-EtOAc $(83.5\%)^{30}$.

Antimicrobial Activity: Camporese et al., evaluated the antibacterial activity of hexane, chloroform, and methanol leaf extracts of H. patens against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis amongst which only hexane extract was found to effective against E. coli 39. Okoye et al., also studied the antimicrobial activity of the plant leaf extracts (Ethanol, Methanol, Petroleum ether, and aqueous extract) against E. coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhiand, S. aureus and antifungal activity against C. albicans and A. niger.

The minimum inhibitory concentration was between 12.5 mg/ml to 100 mg/ml. Ethanolic extract showed the highest antimicrobial effect ⁴⁰. Anti-bacterial activity of Ethanolic (70%) leaf extract prepared using Maceration, Soxhlet and Percolation against *Escherichia coli*, *Staphylococcus aureus*, *Salmonella typhi*, and *S. paratyphi* was compared by Paz *et al.*, and the activity was not found to differ significantly in extracts prepared by three methods, and all the

antimicrobial activity extracts showed Antibacterial and antifungal activity of aqueous, acetone, methanolic and ethanolic extracts of bark. stem + bark extracts stem, and against **Staphylococcus** Bacillus subtilis. aureus, Pseudomonas flurescens, Escherichia coli and niger, Penicillium chrysogenum, Aspergillus Alternaria alternata was done by Singh et al., using agar well diffusion and serial dilution methods extracts tested were Aqueous, Acetone, Methanolic and Ethanolic extracts of Bark, Stem, and Stem + Bark. Acetone extracts were found to have the highest activity ³⁶. A bubacker et al., studied the antifungal potential of leaf, flower and fruit aqueous extracts for Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, and Rhizoctonia solani. Leaf and fruit extract were effective ⁴¹. At 10% Aq. leaf extract inhibited A. fumigates, C. albicans, F. oxysporum and R. solani completely; Flower extract inhibited F. oxysporum and R. solani by 100% while fruit extract inhibited all the fungal strains. Silver nanoparticles synthesized from aqueous leaf extract of *H. patens* were tested for antibacterial activity against Salmonella ebony Bacillus subtilis, Klebsiella pneumonia, and Pseudomonas aeruginosa by Reddy *et* al., Maximum activity of the nanoparticles was observed against Pseudomonas *aeruginosa* followed by Salmonella ebony ⁴².

Anticancer Activity: Studies conducted to evaluate its cytotoxic activity with the cells used, and results obtained are summarized in **Table 6**.

Antinociceptive Activity: In thermal-induced nociception (hot plate) and the chemical-induced nociceptive tests (acetic acid and formalin), the effect of ethanolic extract of leaves was evaluated **Table 7**⁴⁷. Rao *et al.*, ⁴⁸ also studied the analgesic activity of ethanolic extract of *H. patens* leaves using hot plate test and formalin-induced paw licking test in rats and observed that extract (50-200 mg/kg b. wt.) increased reaction time of animals in a dose-dependent manner.

Blood Sugar Lowering Activity: HEX, DCM– EtOAc, MeOH–EtOAc, and MeOH–Aq. extracts were evaluated for in vitro α -glucosidase inhibition. The highest inhibition was exhibited by HEX extract with IC₅₀ value was 26.07 mg/ mL ³⁰. The ability of crude and fractional methanolic extracts to reduce blood glucose levels in streptozotocininduced hyperglycemia was evaluated.

All the extracts normalized the glucose level after 10 administrations. Epicatechin and chlorogenic acid out of the five compounds identified in the extracts demonstrated Anti-hyperglycemic activity and may be considered responsible for the activity. Alloxan induced diabetes in rats has also

been used to investigate the anti-diabetic activity of petroleum ether and ethanolic extracts of H. patens (100 and 400 mg/kg). Both the extracts reduced blood glucose level, total cholesterol, and total triglycerides significantly in a dose-dependent manner, which was comparable to that of Standard drug glibenclamide (10 mg/kg, body wt.).

S. no.	Extract	Cancer Cells	Result
1	Root bark extract	Cervix adenocarcinoma (Hela)	$IC_{50} = 13 \ \mu g/mL^{43}$
2	Alkaloid	MCF-7	$\rm IC_{50}8.42\pm1.1C_{50}\mu g/ml$ ⁴⁴
	fraction(HPAE)	H-460	$IC_{50} \ 90.40 \pm 18.48 \ \mu g/ml$
		SF-268	$IC_{50}91.47\pm19.74\;\mu g/ml$
3	Crude leaf and flower	Liver carcinoma	Crude leaf and flower extracts, both ME and ZSM-5
	extracts		encapsulated could be used as ancillary therapy for
		Breast carcinoma	liver carcinoma 45
			For breast carcinoma, crude extracts were found to be
			more effective. Chloroform leaf fraction showed
			antiproliferative potency in both the cell lines.
			Microemulsion form of the methanolic fraction was
			more potent than plain, and ZSM-5 encapsulated form
4	Plant extracts	HeLa cells	No significant cytotoxic activity was found ⁴⁶
5	Methanolic, hexane, ethyl acetate and	Vero cells	No significant activity ³⁵
	butanol extracts		

TABLE 7: ANTINOCICEPTIVE ACTIVITY OF ETHANOLIC EXTRACT

Test	Extract	Anti-nociceptive
		activity
Thermal induced	100 mg/kg	17%
nociception	200 mg/kg	25%
Formalin induced	100 mg/kg	30%
nociception	200 mg/kg	39%
Acetic acid induced	100 mg/kg	57%
nociception	200 mg/kg	65%

Hypoglycemic effects of aerial parts of *H. patens* ethanol (50%)water extracts and were demonstrated in STZ nicotinamide induced diabetes in rats. Water extract produced hypoglycemic effect after 120 min while ethanol (50%) extract produced effect after 60 min, which was similar to glibenclamide, which also showed hypoglycemic effects after 60 min²⁹.

Hepatoprotective Activity: Methanolic crude, hexane, ethyl acetate, and butanol extracts of H. patens were evaluated for hepatoprotective activity. Aspartate Aminotransferase (AST) activity on HepG2 cells damaged with CCl₄ was done, and best activity was shown by Butanol extract (43.74 ± 4.03)³⁵.

Antidepressant: Chloroform and methanolic extracts were investigated for antidepressant activity in mice. Chloroform extract (100 and 200 mg/kg/day, p.o.) showed better activity in forced swim test and tail suspension test by decreasing immobility time. No significant change in locomotor activity was shown by the extracts in open field tests 49.

Acetylcholinesterase Inhibitory: Docking after GC-MS analysis of a methanolic extract of H. patens leaves was done.

Acetylcholinesterase inhibitory activity of the extract was studied both in-vitro and in-vivo on the brain of Danio rerio (zebrafish), which was found to be significant 50 .

Toxicity Studies: The LD_{50} of 500-500 mg/kg b. wt. of *H. patens* leaves ethanol extract was found to be 2964 mg/kg b. wt. i.p. and >5000 mg/kg b. wt.

p.o (peroral) acute and subacute toxicity studies respectively ⁴⁷. Some other pharmacological

activities evaluated by researchers are summarized in **Table 8**.

1 Anti-diarrheal activity Methanol extract Most potent activity at 100 mg/kg In-vitro (Inhibitory effect on the smooth muscles) and In-vivo in mice and rats Methanol leaf extract Highest activity shown by 2 Anti-leishmanial activity Methanol leaf extract Highest activity shown by against Leishmania mexicana was partitioned Dichloromethane and Ethyl acetat between Hexane, extract and Palmirine ²² Dichloromethane and Ethyl acetate Four alkaloids from Four alkaloids from	g ⁵¹
In-vitro (Inhibitory effect on the smooth muscles) and In-vivo in mice and rats 2 Anti-leishmanial activity against Leishmania mexicana Methanol leaf extract Between Hexane, Extract and Palmirine ²² Dichloromethane and Ethyl acetate Four alkaloids from	
muscles) and <i>In-vivo</i> in mice and rats 2 Anti-leishmanial activity against <i>Leishmania mexicana</i> <i>Leishmania mexicana</i> <i>Leishmania mexicana</i> <i>Methanol leaf extract</i> <i>was partitioned</i> <i>between Hexane,</i> <i>Dichloromethane and Ethyl acetate</i> <i>Ethyl acetate</i> <i>Four alkaloids from</i>	
2 Anti-leishmanial activity against <i>Leishmania mexicana</i>	
against <i>Leishmania mexicana</i> between Hexane, Dichloromethane and Ethyl acetar Dichloromethane and Ethyl acetate Four alkaloids from	
between Hexane, extract and Palmirine ²² Dichloromethane and Ethyl acetate Four alkaloids from	ate
Dichloromethane and Ethyl acetate Four alkaloids from	
Ethyl acetate Four alkaloids from	
Four alkaloids from	
DCM extract	50
3 Antiurolithiatic activity Roots decoction Potent anti-urolithiatic activity	
4 Antilithiatic activity (ethylene glycol (EG) used Ethanolic leaf extract The levels of calcium, phosphate, u	uric
to alter the ionic level of urine) acid and oxalate ions level scaled do	lown
and level of magnesium was increa	ased
5 Anthelmintic activity Ethanolic leaf, stem Immobilization of <i>Pheretima</i>	
and root extracts posthuman ⁵⁴	
6 Indicator for acid-base titrations activity Methanolic flower Good activity in strong acid again	nst
extract strong base, strong acid against a w	veak
base, weak acid against strong base	e and
weak acid against weak base titrations	ions
7 Docking studies Methanolic extract Five compounds (isopteropodine	le,
for finding out a new compound like Nutlin rumberine, palmirine, maruquine a	and
(MDM-p53 inhibitor) alkaloid A) hypothesized to have t	the
potency to inhibit MDM2 protein	n ⁵⁶
8 Stabilizing and reducing agent Plant extract Reducing and stabilizing agent for	or
formulation of Ag-Au nanoparticle	es at
a concentration of 2% w/v and prov	oved
to be a fast reducing agent ⁵⁷	
9 Antipyretic activity (Brewer's yeast Ethanolic leaf extract The reduction in temperature from 3	38.2
induced hyperpyrexia) ± 0.4 to 36.0 ± 0.3 after 120 min of	of the $\frac{1}{8}$
administration of 200 mg/kg	. 46
10 Antiviral activity (VHS- 1 and VHS-2 cells) Plant extracts No significant anti-herpetic activity	ty "
11 wound healing activity Ethanolic extract of Breaking strength of wounds increa	ased
12 Double incision wound nearing model aerial parts	an of
KCLinduced contraction in rat myometrium collected from Maxico presence of ovindele alkaloide ²²	23

TABLE 8: OTHER PHARMACOLOGICAL ACTIVITIES

CONCLUSION: *Hamelia patens* are rich in bioactive constituents which might be responsible for its various pharmacological activities. Various extracts of leaves, flowers, stems and roots of the plant as well as the major constituents isolated have shown potent activities.

Further, research is needed to identify and isolate bioactive ingredients that would be beneficial in various diseases and may reduce dependence on synthetic drugs.

ACKNOWLEDGEMENT: Nil

CONFLICTS OF INTEREST: Nil

International Journal of Pharmacognosy

REFERENCES:

- 1. Don E: Cultivated plants of the world. Flora Publications International Publishers, Edition 1st 1995.
- 2. Elias TS and Pooler MR: The identity of the African firebush (Hamelia) in the ornamental nursery trade. HortScience 2004; 39(6): 1224-26.
- Bano J, Santra S and Menghani E: *Hamelia patens* a potential plant from Rubiaceae family: A Review. International Journal of Scientific Engineering and Research 2015; 6(12): 960-73.
- 4. Andrade-Cetto and Adolfo: Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. Journal of Ethnopharmacology 2009; 122(1): 163-71.
- Sastri BN: The Wealth of India: A Dictionary of Indian Raw Materials and Industrial Products: Council of Scientific & Industrial Research New Delhi, Vol. V, 2007: 5-6.

- Cruz EC and Andrade-cetto A: Ethnopharmacological fi eld study of the plants used to treat type 2 diabetes among the Cakchiquels in Guatemala. J Ethnopharmacol 2015; 159: 238-44.
- Arzu Y and Thiagarajan T: Medicinal plants used by the Rastafarian community in Belize. International Journal of Herbal Medicine 2016; 4(3): 15-20.
- 8. Giovannini P: Medicinal plants of the Achuar (Jivaro) of amazonian ecuador: ethnobotanical survey and comparison with other amazonian pharmacopoeias. Journal of Ethnopharmacology 2015: 1-11.
- Ruiz-Terán F, Medrano-Martínez A and Navarro-Ocaña A: Antioxidant and free radical scavenging activities of plant extracts used in traditional medicine in Mexico. African Journal of Biotechnology 2008; 7(12): 1886-93.
- Andrade-cetto A: Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México 2009; 122: 163-71.
- 11. Reimers EAL, Fernández CE and Reimers DJL: An ethnobotanical survey of medicinal plants used in Papantla, Veracruz, Mexico. Plants 2019; 8(8): 1-20.
- 12. Brown SH, Hammer R and Mark S: Hamelia patens var. patens: The Native Firebush. Univ Florida IFAS Ext 2014; 239.
- 13. Surana AR and Wagh RD: Pharmacognostic study and development of quality parameters of *Hamelia patens* jacq. stems. Der Pharmacia Lettre 2016; 8(8): 6-13
- Coe FG and Anderson GJ: Ethnobotany of the Sumu (Ulwa) of South-eastern Nicaragua and comparisons with Miskitu plant lore. Economic Botany 1999; 53(4): 363-86.
- 15. Ahmad A, Pandurangan A, Singh N and Ananad P: A mini review on chemistry and biology of *Hamelia patens* (Rubiaceae). Pharmacogn J 2012; 4(29): 1-4.
- Frei B, Baltisberger M, Sticher O and Heinrich M: Medical ethnobotany of the Zapotecs of the Isthmus-Sierra (Oaxaca, Mexico): Documentation and assessment of indigenous uses. Journal of Ethno 1998; 62(2): 149-65.
- 17. Shanmugam S, Annadurai M and Rajendran K: Ethnomedicinal plants used to cure diarrhoea and dysentery in Pachalur hills of Dindigul district in Tamil Nadu, Southern India. Journal of Applied Pharmaceutical Science 2011; 1(8): 94.
- Joly LG, Guerra S, Septimo R, Solis PN, Correa M, Gupta M, Levy S and Sandberg F: Ethnobotanical inventory of medicinal plants used by the Guaymi Indians in Western Panama. Part I. Journal of Ethno 1987; 20(2): 145-71.
- Flores-Sanchez IJ, Paniagua-Vega D, Vera-Reyes I, Cerda-García-Rojas CM and Ramos-Valdivia AC: Alkaloid biosynthesis and metabolic profiling responses to jasmonic acid elicitation in *Hamelia patens* plants by NMR-based metabolomics. Metabolomics 2016; 12(4): 66.
- 20. Rios MY and Aguilar-Guadarrama AB: Alcaloides indólicos, terpenos, esteroles y flavonoides de las hojas de *Hamelia patens* Jacquin (Rubiaceae). Revista Cubana de Plantas Medicinales 2006; 11: 0-0.
- Paniagua-Vega D, Cerda-García-Rojas CM, Ponce-Noyola T and Ramos-Valdivia AC: A new monoterpenoid oxindole alkaloid from *Hamelia patens* micro propagated plantlets. Natural product communications 2012; 7(11): 1934578X1200701109.
- Suárez A, Diaz B, Tillett S, Valdivieso E and Compagnone R: Leishmanicidal activity of alkaloids from *Hamelia patens*. Ciencia 2011; 16: 148-55.
- 23. Reyes-Chilpa R, Rivera J, Oropeza M, Mendoza P, Amekraz B, Jankowski C and Campos M: Methanol extracts of *Hamelia patens* containing oxindole alkaloids

relax KCl-induced contraction in rat myometrium. Biological and Pharma Bulletin 2004; 27(10): 1617-20.

- 24. Ripperger H: Isolation of isopteropodin from Hamelia patens. Pharmazie 1977; 32(7): 415-6
- 25. Chaudhuri PK and Thakur RS: Hamelia patens: a new source of ephedrine. Planta Medica 1991; 57(02): 199.
- 26. Aquino R, Ciavatta ML, De Simone F and Pizza C: A flavanone glycoside from Hamelia patens. Phytochemistry 1990; 29(7): 2359-60.
- Rugerio-Escalona C, Ordaz-Pichardo C, Becerra-Martinez E, Cruz-López MD, Lopez-y-Lopez VE, Mendieta-Moctezuma A, Maldonado-Mendoza IE and Jiménez-Montejo FE: "Diabetes and metabolism disorders medicinal plants: a glance at the past and a look to the future 2018": Antihyperglycemic Activity of *Hamelia patens* Jacq. Extracts. Evidence-Based Complementary and Alternative Medicine 2018; 1-9.
- 28. Paz JE, Contreras CR, Munguía AR, Aguilar CN and Inungaray ML: Phenolic content and antibacterial activity of extracts of *Hamelia patens* obtained by different extraction methods. Brazilian Journal of Microbiology 2018; 49(3): 656-61.
- 29. Andrade-Cetto A, Escandón-Rivera S and Garcia-Luna V: Hypoglycemic effect of *Hamelia patens* Jacq., aerial part in STZ-NA-induced diabetic rats. Pharmacologyonline 2015; 3: 65-9b.
- Jimenez-Suarez V, Nieto-Camacho A, Jiménez-Estrada M and Alvarado Sanchez B: Anti-inflammatory, free radical scavenging and alpha-glucosidase inhibitory activities of *Hamelia patens* and its chemical constituents. Pharmaceutical Biology 2016; 54(9): 1822-30.
- Ripperger H: Isolation of stigmast-4-ene-3, 6-dione from Hamelia patens and Clitoriaternatea. Pharmazie 1978; 33(1): 82-3
- 32. Bano J, Santra S and Menghani E: Evaluation and characterization of bioactive compound of *Hamelia patens* plant with the gc-ms spectroscopy. Eval 2018; 11(11): 232-35.
- 33. Khandelwal S, Sharma P, Singh T and Vijayvergia R: Quantitative estimation and comparative study of primary metabolites of some medicinal plants. Current Pharma Research 2011; 2(1): 378.
- 34. Surana AR, Kumbhare MR and Wagh RD: Estimation of total phenolic and total flavonoid content and assessment of in vitro antioxidant activity of extracts of *Hamelia patens* Jacq. stems. Research Journal of Phytochemistry 2016; 10(2): 67-74.
- 35. Perez-Meseguer J, Delgado-Montemayor C, Ortíz-Torres T, Salazar-Aranda R, Cordero-Perez P and de Torres NW: Antioxidant and hepatoprotective activity of *Hamelia patens* extracts. Pakistan J of Pharma Sciences 2016; 29: 343-48.
- Suruchi S, Kashif K, Sharma SK and Lalit S: *In-vitro* assessment of antimicrobial and antioxidant activity of various extracts of *Hamelia patens*. J Chem Pharm Sci 2014; 7: 147-53.
- Ramos A, Visozo A, Piloto J, Garcia A, Rodriguez CA and Rivero R: Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. Journal of ethnopharmacology. 2003; 87(2-3): 241-6.
- Sosa S, Balick MJ, Arvigo R, Esposito RG, Pizza C, Altinier G and Tubaro A: Screening of the topical antiinflammatory activity of some Central American plants. Journal of Ethnopharmacology 2002; 81(2): 211-5.
- 39. Camporese A, Balick MJ, Arvigo R, Esposito RG, Morsellino N, De Simone F and Tubaro A: Screening of

anti-bacterial activity of medicinal plants from Belize (Central America). J of Ethno 2003; 87(1): 103-7.

- 40. Okoye EL and Ezeogo JI: Antimicrobial Activity of the Crude Extracts of *Hamelia patens* on Some Selected Clinical Samples. Journal of Complementary and Alternative Medical Research 2016:1-7.
- 41. Abubacker MN, Sathya C and Prabakaran R: *In-vitro* antifungal potentials of *Hamelia patens* Jacq.(Rubiaceae) aqueous extracts of leaves, flowers and fruits. Biosciences Biotechnology Research Asia 2013; 10(2): 699-04.
- 42. Reddy LN: Synthesis and antibacterial activity of silver nanoparticles from *Hamelia patens* aqueous leaf extract. Jof Global Trends in Pharma Sci 2018; 9(2): 5568-74.
- 43. Mena-Rejon G, Caamal-Fuentes E, Cantillo-Ciau Z, Cedillo-Rivera R, Flores-Guido J and Moo-Puc R: *In-vitro* cytotoxic activity of nine plants used in Mayan traditional medicine. Journal of Ethnopharma 2009; 121(3): 462-5.
- 44. Kumar S, Bodla R and Kant R: Non-targeted analysis and cytotoxic activity of *Hamelia patens* jacq. International Journal of Pharmaceutical Sciences and Research 2018; 9: 1093-99.
- 45. Maamoun MANI: Phytochemical and Nanotechnological approaches as a promising avenue for improving the antiproliferative activity of *Hamelia patens* Jacq. Family Rubiaceae. [Thesis on the Internet]. Cairo University 2019; 1-16.
- 46. Silva-Mares D, Rivas-Galindo VM, Salazar-Aranda R, Pérez-Lopez LA, Waksman De Torres N, Pérez-Meseguer J and Torres-Lopez E: Screening of north-east Mexico medicinal plants with activities against herpes simplex virus and human cancer cell line. Natural Product Research 2019; 33(10): 1531-4.
- Alonso-Castro AJ, Balleza-Ramos S, Hernández-Morales A, Zapata-Morales JR, González-Chávez MM and Carranza-Álvarez C: Toxicity and antinociceptive effects of *Hamelia patens*. Revista Brasileira de Farmacognosia. 2015; 25(2): 170-6.
- 48. Vijay RB, Raghavendra RM, Sireesha B, Simi P and Praveen KV: Analgesic and antipyretic activities of ethanolic extract of *Hamelia patens* leaf in animal models.

Advances in Biotechnology & Microbiology 2016; 1: 001-004.

- 49. Surana AR and Wagh RD: GC-MS profiling and antidepressant-like effect of the extracts of *Hamelia patens* in animal model. Bang J of Pharma 2017; 12(4): 410-6.
- 50. Husna A, Bhavya M and Manjushree R: Inhibitor of acetylcholine esterase from *Hamelia patens* for alzheimer's disease by using danio rerio as a model organism. World Journal of Pharmacy and Pharmaceutical Sciences 2016; 5(5): 701-709.
- 51. Pérez G S, Zavala S MA, Vargas SR, Hernández ZE and Pérez GRM: Antidiarrhoeal activity of *H. patens* methanol extract in rats and mice. Phyt Res 1996; 10(8): 686-8.
- 52. Ahmed S, Hasan MM and Mahmood ZA: Antiurolithiatic plants: Multidimensional pharmacology. Journal of Pharmacognosy and Phytochemistry 2016; 5(2): 4.
- 53. Yitzhak K: Antilithiatic Activity of Ethanolic Extract of *Hamelia patens* (Leaves) on Ethylene Glycol Induced Lithiasis in Rats. International Journal of Current Trends in Pharmaceutical Research 2014; 2(5): 596-12.
- 54. Khandelwal S, Sharma P, Singh T and Vijayvergia R: Anthelmintic and antimicrobial activity of *Hamelia patens* Jacq. (Rubiaceae). Int J of Nat Prod Res 2012; 1(1): 54-6.
- 55. Shahajirao KS, Gorakh RK, Ramchandra SS and Shivgonda PS: *Hamelia patens* Jacq Flower Extract as Indicator for Acid-Base Titration and Development of Litmus Paper. Research Journal of Pharmaceutical Dosage Forms and Technology 2019; 11(3): 178-80.
- 56. Rosaweg S and Curacao WNA: Targeting p53-MDM2 Interaction by Natural Plant Products: A novel approach for future cancer therapy. Int J Life Sci Scienti Res 2017; 3(2): 940-50.
- 57. Chavez K and Rosas G: Green Synthesis and Characterization of Ag@ Au Core-shell Bimetallic Nanoparticles using the Extract of *Hamelia patens* Plant. Microscopy and Microanalysis. 2019; 25(S2): 1102-3.
- Gomez-Beloz A, Rucinski JC, Balick MJ and Tipton C: Double incision wound healing bioassay using *H. patens* from El Salvador. J of Ethno 2003; 88(2-3): 169-73.

How to cite this article:

Kaushik C and Singh MV: An updated phytopharmacological review on *Hamelia patens* jacq. Int J Pharmacognosy 2020; 7(3): 52-61. doi link: http://dx.doi.org/10.13040/IJPSR.0975-8232.IJP.7(3).52-61.

This Journal licensed under a Creative Commons Attribution-Non-commercial-Share Alike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)